期刊文献+

Synergistic effects of carbon doping and coating of TiO_(2) with exceptional photocurrent enhancement for high performance H2 production from water splitting 被引量:1

下载PDF
导出
摘要 The"one pot"simultaneous carbon coating and doping of TiO_(2) materials by the hydrolysis of TiCl4 in fructose is reported.The synergistic effect of carbon doping and coating of TiO_(2) to significantly boost textural,optical and electronic properties and photocurrent of TiO_(2) for high performance visible light H2 production from water splitting has been comprehensively investigated.Carbon doping can significantly increase the thermal stability,thus inhibiting the phase transformation of the Titania material from anatase to rutile while carbon coating can suppress the grain aggregation of TiO_(2).The synergy of carbon doping and coating can not only ensure an enhanced narrowing effect of the electronic band gap of TiO_(2) thus extending the absorption of photocatalysts to the visible regions,but also promote dramatically the separation of electron-hole pairs.Owing to these synergistic effects,the carbon coated and doped TiO_(2) shows much superior photocatalytic activity for both degradation of organics and photocatalytic/photoelectro chemical(PEC)water splitting under simulated sunlight illumination.The photocatalytic activity of obtained materials can reach 5,4 and 2 times higher than that of pristine TiO_(2),carbon doped TiO_(2) and carbon coated TiO_(2),respectively in the degradation of organic pollutants.The carbon coated and doped TiO_(2) materials exhibited more than 37 times and hundreds of times photocurrent enhancement under simulated sunlight and visible light,respectively compared to that of pristine TiO_(2).The present work providing new comprehensive understanding on carbon coating and doping effect could be very helpful for the development of advanced TiO_(2) materials for a large series of applications.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期141-151,共11页 能源化学(英文版)
基金 supported by the National Natural Science Foundation of China(U1663225,21805280) Program for Changjiang Scholars and Innovative Research Team in University(IRT15R52) the Minstry of Education of Chinathe 111 Project(Grant No.B20002)from the Ministry of Science and Technology and the Ministry of Education of China,China,European Commission,Interreg V France-Wallonie-Vlaanderen(Depollutair) the Fundamental Research Funds for the Central Universities(WUT:2017III001),China the FJIRSM&IUE Joint Research Fund(RHZX-2018-002),China for supporting this work。
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部