期刊文献+

Insight into the reaction mechanism of sulfur chains adjustable polymer cathode for high-loading lithium-organosulfur batteries 被引量:2

下载PDF
导出
摘要 Small molecules with adjustable sulfur atoms in the confined structure were acted as precursor for the synthesis of polymer cathodes for lithium-organosulfur batteries.Among them,poly(diallyl tetrasulfide)(PDATtS)delivered a high capacity of 700 mAh g^(-1),stable capacity retention of 85%after 300 cycles,high areal capacity~4 m Ah cm^(-2) for electrode with up to 10.3 mg cm^(-2) loading.New insight into the reaction mechanism of PDATtS electrode that radicals arisen from the homolytic cleavage of S-S bond in PDATtS reacted with Li+to generate thiolates(RSLi)and insoluble lithium sulfides(Li_(2)S)or lithium disulfide(Li_(2)S_(2))was clearly verified by in-situ UV/Vis spectroscopy,nuclear magnetic resonance(NMR)studies and density-functional theory(DFT)calculations.Therefore,based on the unique reaction mechanism,problems of rapid capacity fading due to the formation of soluble polysulfide intermediates and their serious shuttle effect in conventional lithium-sulfur(Li-S)batteries was totally avoided,realizing the dendrite-free lithium sulfur batteries.This study sets new trends for avenues of further research to advance Li-S battery technologies.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期238-244,共7页 能源化学(英文版)
基金 support from the National Natural Science Foundations of China(grants 51622208,21703149,and 51872193) the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
  • 相关文献

同被引文献37

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部