期刊文献+

In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution 被引量:2

下载PDF
导出
摘要 Water splitting has received more and more attention because of its huge potential to generate clean and renewable energy.The highly active and durable oxygen evolution reaction(OER)catalysts play a decisive factor in achieving efficient water splitting.The identification of authentic active origin under the service conditions can prompt a more reasonable design of catalysts together with well-confined micro-/nano-structures to boost the efficiency of water splitting.Herein,Fe,Co,and Ni ternary transition metal dichalcogenide(FCND)nanorod arrays on Ni foam are purposely designed as an active and stable low-cost OER pre-catalyst for the electrolysis of water in alkaline media.The optimized FCND catalyst demonstrated a lower overpotential than the binary and unary counterparts,and a 27-fold rise in kinetic current density at the overpotential of 300 m V compared to the nickel dichalcogenide counterpart.Raman spectra and other structural characterizations at different potentials reveal that the in-situ surface self-reconstruction from FCND to ternary transition metal oxyhydroxides(FCNOH)on catalyst surfaces initiated at about 1.5 V,which is identified as the origin of OER activity.The surface selfreconstruction towards FCNOH also enables excellent stability,without fading upon the test for 50 h.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期10-16,共7页 能源化学(英文版)
基金 the financial support from the National Natural Science Foundation of China(21673171) the kind support for the academic research by the Ministry of Education Singapore(Tier 1,R284-000-193-114)for research conducted in the National University of Singapore.Q.C.thanks support from the China Scholarship Council(CSC)。
  • 相关文献

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部