期刊文献+

一类脉冲随机微积分方程解的稳定性分析

Stability Analysis of Solutions of a Kind of Impulsive Stochastic Calculus Equations
下载PDF
导出
摘要 不确定性是影响控制系统复杂性的最重要因素,为了更好地研究系统的性能,提出了带有随机脉动的微分方程,从应用的角度,大量的数学工具被引入到控制研究中,计算机技术的快速发展也为解决这一问题提供了便利。为了更准确地揭示系统发展变化的规律,在建立系统模型时需要考虑随机干扰和脉冲对系统的影响。主要概述了随机微积分系统研究的背景、研究意义及现状,并研究了带有时滞脉冲随机微积分方程解的稳定性。 Uncertainty is the most important factor affecting the complexity of the control system.In order to better study the performance of the system,scholars have proposed differential equations with random pulsation.From the perspective of application,a large number of mathematical tools have been introduced into the control In the research,the rapid development of computer technology also provides convenience for solving this problem.In order to more accurately reveal the law of system development and change,the influence of random interference and pulses on the system needs to be considered when establishing the system model.The main content includes an overview of the background,significance and status of the research on stochastic calculus systems,and the stability of the solutions of impulsive stochastic calculus equations with delays.
作者 孙志强 Sun Zhi-qiang
出处 《化工设计通讯》 CAS 2021年第3期68-70,共3页 Chemical Engineering Design Communications
关键词 随机系统 脉冲随机微分方程 稳定性 stochastic system impulsive stochastic differential equation stability
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部