期刊文献+

基于重排频谱时频脊的海面小目标检测

Detection of Small Targets on Sea Surface Based on Time-Frequency Ridge of Rearranged Spectrum
下载PDF
导出
摘要 针对由于传统W-H算法计算量大,检测效率不高,海面小目标检测难度较大的问题,提出了基于重排频谱时频脊的小目标检测新算法。通过研究实测数据的时频谱能量分布特点,对比了在不同极化条件下,传统算法与新算法对多组实测数据的分析结果,研究了Hough参数域内的尖峰特性,对小目标实现了有效检测,验证了算法的可行性。最终得出结论:新算法选取重排算法以及提取重排谱时频脊提高了检测能力,降低了运算量,对海面小目标实现有效检测,且HH极化条件下新算法的检测性能更好。 It is difficult to detect small targets on the sea surface due to large amount of calculation and low detection efficiency of the traditional W-H algorithm.To solve the problema new small target detection algorithm based on time-frequency ridge of rearranged spectrum is proposed.This paper studies the characteristics of energy distribution of the time-frequency spectrum of the measured datacompares the analysis results of multiple groups of measured data of the traditional algorithm with that of the new algorithm under different polarization conditionsand studies the characteristics of spikes in Hough parameter domain.The algorithm can effectively detect small targetswhich verifies the feasibility of the algorithm.Finallyit is concluded thatby selecting the rearrangement algorithm and extracting the ridge of the rearranged time-frequency spectrumthe new algorithm improves the detection abilityreduces the computation amountand effectively detects small targets on the sea surface with better performance under the condition of HH polarization.
作者 唐建军 梁浩 朱张勤 金林 TANG Jianjun;LIANG Hao;ZHU Zhangqin;JIN Lin(Nanjing Institute of Electronic Technology,Nanjing 210039,China)
出处 《电光与控制》 CSCD 北大核心 2021年第4期53-57,共5页 Electronics Optics & Control
关键词 海面小目标 时频分析 重排频谱 时频脊 small target on sea surface time-frequency analysis spectrum rearrangement time-frequency ridge
  • 相关文献

参考文献3

二级参考文献38

  • 1杜鹏飞,王永良.海杂波背景中的一种恒虚警率检测方法[J].国防科技大学学报,2005,27(3):54-57. 被引量:9
  • 2付丽华,李宏伟,张猛.基于小波变换的复杂噪声背景中谐波恢复方法[J].工程地球物理学报,2005,2(1):22-28. 被引量:10
  • 3[1]Hlawatsch F,G F Boudreaux-Bartels.Linear and quadratic time-frequency signal representations[J].IEEE Signal Processing,1992,9(2):21~67.
  • 4[4]Gabor D.Theory of Communication[J].Journal of the IEEE.1946,93:429~497.
  • 5[6]Rioul,O,and M Vetterli.Wavelet and signal processing[J].IEEE Signal Processing,1991,8(4):14~38.
  • 6[7]Avijit Chakraborty,David Okaya.Frequency-time decomposition of seismic data using wavelet-based methods[J].Geophysics,1995,60(6):1906~1916.
  • 7[10]Satish Sinha,Partha S Routh,etc.Spectral decomposition of seismic data with continuous-wavelet transform[J].Geophysics,2005,70(6):19~25.
  • 8[11]Hongbing Li,Wenzhi Zhao,etc.Measures of scale based on the wavelet scalogram with applications to seismic attenuation[J],Geophysics.2006,71(5):111~118.
  • 9[12]Jeffrey C,William J.On the existence of discrete Wigner distributions[J].IEEE Signal Processing Letters,1999,6(12):304~306.
  • 10[14]Cohen L.Generalized phase-space distribution functions[J].Jour.Math.Phys,1966,7:781~787.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部