摘要
针对带状序列无人机影像自检校空中三角测量时存在相机参数误差累积过大的问题,提出一种分类自检校(CSC)方法。该方法首先根据影像的GPS位置信息建立KD树,并利用K-Means进行自分类;然后对每类影像分别进行自检校光束法平差,将自检校得到的多组相机参数进行加权平均;最后进行全局自检校光束法平差。多组实验表明,CSC方法与室内检校场检校参数的像点畸变不符值均方根误差为0.5像素,检查点点位均方根误差为10.1 cm,且较Smart3D,VisualSFM和COLMAP软件能更精确地表示数据的原始姿态。综上,CSC方法可为带状区域无人机影像自检校空中三角测量提供一种有效的方案,具有较强的实践应用价值。
To solve the technical problem of excessive accumulation of errors of camera parameters during aerial triangulation self-calibration of strip sequence images captured by a UAVa Classified Self-Calibration(CSC)method is proposed.Firstlybased on the GPS information of the imagesa KD-tree is set upand K-Means is used for automatic classification of the images.Thenthe self-calibration bundle adjustment of each type of images is conducted respectivelyand weighted average is made to several groups of camera parameters obtained through self-calibration.Finallythe global self-calibration bundle adjustment is conducted.Multiple sets of experiment show thatthe RMSE of the parameter difference between the CSC method and the calibration method conducted in an indoor calibration field after image point distortion removal is 0.5 pixelsand the RMSE of the checkpoint position is 10.1 cm.Compared with that of Smart3DVisualSFM and COLMAP softwarethe results of aerial triangulation of the proposed method could more accurately represent the original pose of the data.In conclusionthe CSC method provides an effective scheme for the aerial triangulation self-calibration of strip sequence images captured by a UAVwhich has high practical application value.
作者
江晓斌
李彩林
王佳文
李桂华
苏本娅
JIANG Xiaobin;LI Cailin;WANG Jiawen;LI Guihua;SU Benya(Institute of Architecture and Engineering,Shandong University of Technology,Zibo 255000,China)
出处
《电光与控制》
CSCD
北大核心
2021年第4期58-63,共6页
Electronics Optics & Control
基金
国家自然科学基金(41601496,41701525)
山东省重点研发计划(2018GGX106002)
山东省自然科学基金(ZR2017LD002)
山东理工大学齐文化研究专项(2017QWH032)。
关键词
相机自检校
光束法平差
带状序列影像
K均值
KD树
camera's self-calibration
bundle adjustment
strip sequence image
K-Means
KD-tree