期刊文献+

枝晶生长的傅里叶谱相场模拟

Fourier Spectral Phase Field Simulation of Dendritic Crystal Growth
下载PDF
导出
摘要 用傅里叶谱方法求解相场模型,并运用该方法对聚合物结晶过程中出现的枝晶生长形态进行数值模拟。通过数值模拟与已有实验结果对比,模拟结果与实验结果基本吻合,验证了傅里叶谱方法求解相场模型的可行性。与有限差分法对比,傅里叶谱方法的运用,简化了对某些运算算子的演化。 Fourier spectral method is used to solve the phase field model,the dendritic growth morphology is numerically simulated in the process of polymer crystallization.By comparing the numerical simulation with the existing experimental results,the results of simulation and experiment are in good agreement,and the feasibility of solving the phase field model by fourier spectral method is verified.Comparing with the finite difference method,the application of fourier spectral method simplifies the evolution of some operatorst.
作者 陈慧琴 杨斌鑫 CHEN Hui-qin;YANG Bin-xin(School of Applied Science,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《太原科技大学学报》 2021年第2期153-157,共5页 Journal of Taiyuan University of Science and Technology
基金 国家自然科学基金项目(11701406)。
关键词 相场 傅里叶谱方法 数值模拟 phase field fourier spectral method numerical simulation
  • 相关文献

参考文献3

二级参考文献15

  • 1WHEELER A A, MURRAY R J, SCHAEFER R J. Computation of dendrites using a phase field model[ J ]. Physica D, 1993,66 (10) :242-262.
  • 2ANDERSON D M, MCFADDEN G B, WHEELER A A. A phase-field model of solidification with convection [ J ]. Physica D, 2000,135 : 175-194.
  • 3KARMA A, RAPPEL W J. Phase-field simulation of three-dimensional dendritic is microscopic solvability theory correct [ J ]. Crystal Groeth, 1997,174:56-64.
  • 4KARMA A, RAPPEL W J. Phase-field method for computationally efficient modeling of solidification with arbitrary interface ki- netics [ J ]. Physical Review E, 1996,53 (4) :3017-3020.
  • 5TONG X,BECKERMANN C,KARMA A. Velocity and shape selection of dentritic crystals in a forced flow[J]. Phys Rev E, 2000,61:49-53.
  • 6BECKERMANN C, VISKANTA R. Mathematical modeling of transport phenomena during solidification of alloys[ J]. Appl Mech Rev, 1993,46 ( 1 ) : 1-7.
  • 7JEONG J H, GOLDENFELD N, DANTZIG J A. Phase-field model for three dimensional dedtitie growth with fluid flow[ J]. Phys Rev R,2001,6404(4) :1602.
  • 8FIX G J. Free boundary problems : theory and applications [ M ]. Boston: A Fasano and M Primicerio, 1983.
  • 9LANGER J S. Instabilities and pattern formation in crystal growth[ J]. Reviews of Modem Physics, 1980,52 (1) :1-28.
  • 10COLLINS J B, LEVINE H. Diffuse interface model of diffusion-limited crystal growth [ J ]. Physical Review B, 1985,31 (9): 6119-6122.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部