期刊文献+

关键钢铁材料的智慧研发路线 被引量:1

Intelligent Research and Development Roadmap for Key Steels
下载PDF
导出
摘要 从面向2035的新材料强国战略出发,针对现代交通、能源、海洋工程以及重大装备等领域,对其急需的关键钢铁材料在品种、规格、性能、质量、服役安全与寿命等方面均提出了明确的发展目标、应攻克的技术瓶颈和“卡脖子”问题。为适应未来先进钢铁材料的发展,应在钢铁材料知识与理论框架下,充分发挥集成计算材料工程及材料信息学的优势,创建新材料的智慧研发路线,实现中国先进钢铁材料的研发从跟随模仿跨越到基于人工智能创新引领的新高地。 Starting from the New Material Power Strategy by 2035,we put forward the development goals,technical bottlenecks and choke points in variety,specifications,properties,quality,service safety and service life of steels urgently needed in modern transportation,energy supply,ocean engineering and heavy equipment manufacturing.In order to fit in with the development of advanced steels in the future,making the most of the advantage of the integrated computing material engineering(ICME)and material informatics should be put in practice under the framework of knowledge and theory of iron and steel.Thus the intelligent research and development roadmap for new materials is established so that the research and development of advanced steels in China can change from following and imitating into new heights of technological innovations based on artificial intelligence.
作者 尚成嘉 王华 黄松 赵坦 王静靓 李秀程 谢振家 王学林 Shang Chengjia;Wang Hua;Huang Song;Zhao Tan;Wang Jingliang;Li Xiucheng;Xie Zhenjia;Wang Xuelin(State Key Laboratory of Metal Materials for Marine Equipment and Application,Anshan 114009,Liaoning,China;Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing,Beijing 100083,China;Yangjiang Branch,Guangdong Laboratory for Materials Science and Technology(Yangjiang Advanced Alloys Laboratory),Yangjiang 529500,Guangdong,China;Angang Steel Co.,Ltd.,Anshan 114021,Liaoning,China)
出处 《鞍钢技术》 CAS 2021年第2期1-8,共8页 Angang Technology
基金 中央高校基本科研业务费专项资金资助(FRF-IC-20-04)
关键词 钢铁材料 集成计算材料工程 材料信息学 steels ICME materials informatics
  • 相关文献

参考文献7

二级参考文献72

  • 1陈超,潘春旭,傅强.采用显微硬度压痕法测量微区残余应力[J].机械工程材料,2007,31(1):8-11. 被引量:15
  • 2Wright S I, Nowell M M. EBSD image quality mapping [J]. Microscopy and Microanlysis, 2006, 12( 1 ) : 72 - 84.
  • 3Keller R R, Rosbko A, Geiss R H, Bertness K A, Quinn T P. EBSD Measurement of strains in GaAs due to oxidation of buried AIGaAs layers [ J ]. Microelectronic Engineering, 2004, 75 (1). 96- 102.
  • 4Luo J F, Ji Y, Zhong T X, Zhang Y Q. EBSD measurements of elastic strain fields in a GaN/sapphire structure [ J]. Microelectronics Reliability, 2006, 46 (1): 178-182.
  • 5FanL X, Guo D L, Ren F, Xiao X H. The use of electron backscatter diffraction to measure the elastic strain fields in a misfit dislocation-free InGaAsP/InP heterostructure[ J]. 2007, 16( 11 ) : 7301 -7305.
  • 6Wilkinson A J. Measurement Strains Using Electron Backscatter Diffraction [ M ]. Electron Backscatter Diffraction in Materials Science. New York: Kluwer Academic, 2000. 231 - 246.
  • 7Troost K Z, van der Sluis P, Gravesteijin D J. Microscale elastic-strain determination by backscatter Kikuchi diffraction in the scanning electron microscope [J]. Applied Physics Letter, 1993, 62(10): 1110- 1112.
  • 8Chevalier L, Calloch S, Hild F,Marco Y. Digital image correlation used to analyze the multiaxial behavior of rubber-like materials [ J ]. European journal of mechanics A, 2001, 20(2) : 169 - 187.
  • 9Wilkinson A J. Methods for determining elastic strains from electron back scatter diffraction and electron channeling patterns [ J ]. Materials Science and Technology, 1997, 13 ( 1 ) : 79 - 84.
  • 10Wilkinson A J. Measurement of elastic strains and small lattice rotations using electron back scatter diffraction [ J ]. Uhramicroscopy, 1996, 62 (4) : 237 - 247.

共引文献137

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部