期刊文献+

基于双匹配配准算法的多重复纹理图像拼接 被引量:4

Registration Algorithm of Multi-repeat Texture Images Based on Double-Match Image Registration
下载PDF
导出
摘要 针对目前图像配准算法对于多重复纹理图像配准位置偏差的问题,提出图像内自匹配与图像间互匹配相结合的双匹配配准(Double-match image registration,DMIR)算法。首先在对待匹配图像提取尺度不变特征转换(Scale-invariant feature transform,SIFT)特征之后,通过K-近邻(K-nearest neighbor,KNN)算法进行特征匹配,分别得到同一张图片的自匹配点对和不同图像间的初始互匹配点对;然后对初始互匹配点对进行相关性计算得到最正确的匹配点对,并根据最正确的匹配点对与自匹配点对的位置关系确定更多的正确匹配点对,最后计算仿射矩阵对图像进行拼接。实验结果显示经过DMIR算法获得的正确匹配点对更均匀、更准确,且拼接图像效果更好。 To solve the problem of the registration position deviation for multi-repeat texture images,a double-match image registration(DMIR)algorithm is proposed.The DMIR algorithm not only considers the matching result of one graph with another graph,but also considers the matching result of a graph with its own features.Firstly,the key points are matched by the K-nearest neighbor(KNN)algorithm after extracting the feature points by the scale-invariant feature transform(SIFT)algorithm.As a result,the selfmatching point pairs of the same image and the initial matching point pairs between different images are obtained respectively.Secondly,the best matching point pairs are obtained by computing the correlation between different points of the initial matching point pairs.Thirdly,the correct matching point pairs of the two images are determined,which depend on the positional relationship between the best matching point pairs and the self-matching point pairs.Lastly,the affine matrix is calculated according to the matching point pairs,and the image stitching is performed.The experimental results show that the matching point pairs obtained by the DMIR algorithm are more accurate,and the stitched images are better than others.
作者 张琳娜 陈建强 吴妍 张悦 岑翼刚 ZHANG Linna;CHEN Jianqiang;WU Yan;ZHANG Yue;CEN Yigang(School of Mechanical Engineering,Guizhou University,Guiyang 550025,China;Criminal Examination Center of Guiyang Security Bureau,Guiyang 550025,China;School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China)
出处 《数据采集与处理》 CSCD 北大核心 2021年第2期334-345,共12页 Journal of Data Acquisition and Processing
基金 中央高校基本科研业务费(2019YJS039)资助项目 贵州省自然科学基金(黔科合基础[2019]1064)资助项目 国家自然科学基金(62062021,61872034)资助项目 北京市自然科学基金(4202055)资助项目。
关键词 图像配准 尺度不变特征转换 K-近邻算法 双匹配配准算法 图像拼接 image registration scale-invariant feature transform(SIFT) K-nearest neighbor(KNN)algorithm double-match image registration(DMIR)algorithm image stitching
  • 相关文献

参考文献5

二级参考文献42

  • 1石祥滨,金士玲,王银斌.无人机可见光图像拼接算法的研究[J].辽宁大学学报(自然科学版),2013,40(2):113-116. 被引量:1
  • 2晏磊,吕书强,赵红颖,张雪虎,杨绍文,赵继成.无人机航空遥感系统关键技术研究[J].武汉大学学报(工学版),2004,37(6):67-70. 被引量:126
  • 3崔红霞,林宗坚,孙杰.无人机遥感监测系统研究[J].测绘通报,2005(5):11-14. 被引量:129
  • 4程鹏飞,杨元喜,李建成,孙汉荣,秘金钟.我国大地测量及卫星导航定位技术的新进展[J].测绘通报,2007(2):1-4. 被引量:40
  • 5景娟娟,吕群波,周锦松,黄曼.图像融合效果评价方法研究[J].光子学报,2007,36(B06):313-317. 被引量:20
  • 6David G L. Distinctive image features from scale-invari ant keypoints[J]. International Journal of Computer Vi sion, 2004,60(2):91 - 110.
  • 7Ess A, Bay H, Tuytelaars T. SURF: speeded up robust features[J]. Computer Vision and Image Under standing, 2008,110(3) :346 - 359.
  • 8Yan K, Rahul S. PCA-SIFT: a more distinctive repre-sentation for local image descriptors [J]. Journal of Computer Vision and Pattern Recognition, 2004 (2): 506 -513.
  • 9Lepetit V, Julien P, Fua P. Point matching as a classification problem for fast and robust object pose estimation [C] // Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C.: IEEE, 2004:244 - 250.
  • 10Amit Y, Geman D. Shape quantization and recognition with randomized trees[J]. Neural Computation, 1997, 9(7) :1545 - 1588.

共引文献56

同被引文献42

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部