期刊文献+

等静压铍材尺寸稳定性研究

Study on Dimensional Stability of Isostatically Pressed Beryllium Material
下载PDF
导出
摘要 通过测试等静压铍材的微屈服强度、热膨胀系数及冷热循环尺寸变化,研究其在抵抗负载及温度变化过程中的尺寸稳定性。结果表明:等静压铍材的微屈服强度较高,平均值127.4 MPa,比美国公布的同等铍材高出53.5%。等静压铍材有较低的热膨胀系数,25~100℃温度区间纵向平均线膨胀系数为12.02×10^(-6)/℃,横向平均线膨胀系数为11.89×10^(-6)/℃。等静压铍材进行多次冷热循环后轴向残余应变总量较小,15次循环后约为-18×10^(-6),尺寸热稳定性较好。 By testing the micro-yield strength,thermal expansion coefficient,and dimensional changes of the isostatically pressed beryllium material,its dimensional stability against load and temperature changes was studied.The results show that the micro-yield strength of isostatically pressed beryllium material is relatively high,with an average value of 127.4 MPa,which is 53.5%higher than the equivalent beryllium materials published in the United States.Isostatically pressed beryllium material has a relatively low thermal expansion coefficient,and its longitudinal and horizontal average linear expansion coefficients in the temperature range of 25~100℃are 12.02×10^(-6)/℃and 11.89×10^(-6)/℃,respectively.The total axial resi-dual strain of isostatically pressed beryllium material is small after repeated cooling and heating cycles,about-18×10^(-6)after 15 cycles,and its dimensional thermal stability is excellent.
作者 李美岁 李志年 张子富 张健康 吕一格 许德美 李树荣 杨超 LI Mei-sui;LI Zhi-nian;ZHANG Zi-fu;ZHANG Jian kang;LYU Yi-ge;XU De mei;LI Shu-rong;YANG Chao(State Key Laboratory of Special Rare Metal Material,Northwest Rare Metal Materials Research Institute Ningxia Co.,Ltd.,Shizuishan 753000,China)
出处 《稀有金属与硬质合金》 CAS CSCD 北大核心 2021年第1期72-76,共5页 Rare Metals and Cemented Carbides
基金 国家自然科学基金(51874246) 宁夏自然科学基金(2018ACC03225)。
关键词 等静压铍材 尺寸稳定性 微屈服强度 热膨胀系数 冷热循环 isostatically pressed beryllium dimensional stability micro-yield strength thermal expansion coefficient cooling and heating cycle
  • 相关文献

参考文献4

二级参考文献23

  • 1钟景明,高勇,王东新,王学泽,王零森.金属铍的微屈服行为及机理[J].中国有色金属学报,2004,14(10):1637-1641. 被引量:14
  • 2[1]Marschall C W, Maringer R E. Dimensional Instability: An Introduction [M]. Oxford: Pergamon Press,1977.
  • 3[2]IngramAG, HoskinsME, SovikJ H, etal. Studyof microplastic properties and dimensional stability of materials[R]. AD838802. Battelle Memorial Inst Columbus Ohio, 1968.
  • 4[3]Paquin R A. Dimensional stability: an overview[A].Dimensional Stability [C]. San Diego, California:SPIE-The Inter Society for Optical Engineering, 1990.2-17.
  • 5[4]Hughel T J. Dimensional Stability of Several Types of Beryllium[M]. London: Chapman and Hall Ltd,1963. 546-552.
  • 6[5]Bonfield W, Li C H. The Microstrain Characteristics of Beryllium[M]. Philadelphia: Gordon and Breach Science Publishers, Inc, 1966. 539 - 567.
  • 7[6]Cattiness W, Fullertin-Batten R C, Paquin R A. Optical application of beryllium[A]. The Metals Society.Beryllium 1977: Fourth Inter Conf on Be[C]. London: The Royal Society, 1977. 53.
  • 8[7]Parsonage T B. Selecting mirror materials for highperformance optical systems[A]. Paquin R A. Dimensional Stability[C]. San Diego, California: SPIE-The International Society for Optical Engineering, 1990.119 - 126.
  • 9[8]Hodge W. Beryllium for structural applications[R].Defense Metals Information Center Columbus,AD278723 Ohio, 18, 1962.
  • 10[9]ZHONG Jing-ming, WANG Zhan-hong, NIE Da-jun,et al. Influence of grain size on mechanical properties of isostatically pressed beryllium Materials[J]. Trans Nonferrous Met Soc China, 2000, 10(2) : 228 - 231.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部