期刊文献+

基于混合核KPLS的工业过程质量预测方法 被引量:1

An Industrial Process Quality Prediction Based on Mixed Kernel KPLS
下载PDF
导出
摘要 核偏最小二乘(KPLS)能够有效解决数据间的非线性问题并提高质量预测精度,在工业过程监测和质量预测中得到了广泛的应用。良好的KPLS质量预测模型要求核函数同时具备内插和外推能力。然而,传统的单核核函数只能表现出其中一种能力。为了克服这一缺点,本文提出一种混合核KPLS方法用于非线性工业过程质量预测。然后,通过使用遗传算法对混合核函数参数及权重进行优化选取,提高质量预测精度。最后,通过使用田纳西-伊思曼过程的使用实例,说明了该方法的实用有效性。 Kernel Partial Least Squares(KPLS) can effectively solve the nonlinear problem between data and improve the accuracy of quality prediction. It has been widely used in industrial process monitoring and quality prediction. A good KPLS quality prediction model requires the kernel function to have both interpolation and extrapolation capabilities. However, the traditional single-core kernel function can only exhibit one of these capabilities. In order to overcome this shortcoming, this paper proposes a hybrid kernel KPLS method for nonlinear industrial process quality prediction. Then, by using genetic algorithm to optimize the selection of the parameters and weights of the mixed kernel function, the quality prediction accuracy is improved. Finally, an example of the Tennessee-Eastman process is used to illustrate the practical effectiveness of the method.
作者 陈路 郑丹 童楚东 CHEN Lu;ZHENG Dan;TONG Chu-dong(Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China)
出处 《无线通信技术》 2020年第4期41-45,共5页 Wireless Communication Technology
基金 国家自然科学基金(61773225) 浙江省自然科学基金项目(LY20F030004)。
关键词 混合核函数 核偏最小二乘 遗传算法 质量预测 mixed kernel function kernel partial least squares genetic algorithm quality prediction
  • 相关文献

参考文献5

二级参考文献36

  • 1宋凯,王海清,李平.折息递推PLS算法及其在橡胶混炼质量控制中的应用[J].化工学报,2004,55(6):942-946. 被引量:16
  • 2阎威武,ZhangChunkai,ShaoHuihe.Nonlinear fault diagnosis method based on kernel principal component analysis[J].High Technology Letters,2005,11(2):189-192. 被引量:1
  • 3刘毅,王海清.Pensim仿真平台在青霉素发酵过程的应用研究[J].系统仿真学报,2006,18(12):3524-3527. 被引量:44
  • 4Roman R.Kernel partial least squares regression in reproducingkernel hilbert space[J].Journal of Machine Learning Research,2001,2(6):97-123.
  • 5Roman R,Nicole K.Overview and recent advances in partial leastsquares[C] ∥Lecture Notes in Computer Science,Heidelberg:Springer,2006.
  • 6Kim K,Lee J M,Lee I B.A novel multivariate regression approachbased on kernel partial least squares with or-thogonal signal cor-rection[J].Chemometrics and Intelligent Laboratory Systems,2005,79(1-2):22-30.
  • 7Jia R D,Mao Z Z,Chang Y Q,et al.Kernel partial robust M-re-gression as a flexible robust nonlinear modeling technique[J].Chemometrics and Intelligent Laboratory Systems,2010,100(2):91-98.
  • 8Hiromatsu K,Takahara J,Nishihara T,et al.Prediction for biode-gradability of chemicals by kernel partial least squares[J].Jour-nal of Computer Aided Chemistry,2009,10:1-9.
  • 9Jo J H,Jo E M,Park D,et al.Application of kernel partial leastsquare to predict biological hydrogen production by enterobacteraerogenes[J].Journal of Nanoelectronics and Optoelectronics,2010,5(2):203-207.
  • 10刘美,黄道平,孙宗海.基于PCA和LS-SVM的丁苯橡胶的门尼粘度预测[J].计算机与应用化学,2008,25(11):1317-1320. 被引量:3

共引文献33

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部