摘要
本文针对传统蒸发冷却冷水机组的设计缺点,不能对机组实际运行情况全面考虑,量产前优化设计复杂、成本投入大等问题。通过借助神经网络对非线性动力学系统的预测能力,建立露点间接蒸发冷却器性能的预测模型,并对网络模型进行训练与仿真,以供参考。
This paper aims at the design shortcomings of the traditional evaporative cooling chillers,such as the failure to take the actual operation of the chillers into full consideration,the complexity of the optimization design before mass production and the large cost input.The prediction model of dew point indirect evaporative cooler was established by using neural network to predict the nonlinear dynamic system,and the network model was trained and simulated.
作者
常若新
黄翔
屈悦滢
CHANG Ruoxin;HUANG Xiang;QU Yueying(School of Urban Planning and Municipal Engineering,Xi'an Polytechnic University,Xi'an Shaanxi 710048)
出处
《智能建筑与工程机械》
2021年第1期50-52,共3页
Intelligent Building and Construction Machinery
关键词
BP神经网络
蒸发冷却
冷水机组
预测分析
BP neural network
evaporative cooling
chiller
predictive analysis