摘要
本文以货运车辆车联网数据中的车辆碰撞预警、疲劳预警和超速预警数据为研究对象,针对G4高速公路北京和河北境内道路上的三种预警热点路段进行识别。运用全局空间自相关性分析方法得出三种预警数据在道路空间中不是随机分布,而是集中在某一个或几个路段上;进一步采用局部空间相关性分析方法识别出三种不同预警类型下对应的热点路段。交通管理部门可根据识别出的预警热点路段提出针对性的管控措施,有助于缓解交通事故的发生,提高货运安全水平。
This paper takes the early warning data of collision, fatigue driving and speeding as the research object, which was obtained from the Internet of Vehicle, and identifies the hotspot sections of three kinds of early warning data on G4 highway in Beijing and Hebei. First, using the theory of global spatial autocorrelation, it is concluded that the early warning points generated during the driving are not randomly distributed in space, but clustered on one or more sections. Then, with the help of local spatial autocorrelation analysis methods, we identify the hotspot sections of three kinds of early warning data. Based on the hotspot sections identified, the traffic management department can take effective measures to prevent traffic accidents and improve the level of freight safety.
作者
张金刚
杨小宝
郑留洋
ZHANG Jingang;YANG Xiaobao;ZHENG Liuyang(MOT Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Beiing Jiaotong University,Beijing 10044,China;BYD survey and design company limited,Shenzhen 518118,China)
出处
《综合运输》
2021年第3期89-95,共7页
China Transportation Review
基金
国家自然科学基金(91746201、71621001)。
关键词
车辆预警数据
全局空间自相关性
局部空间自相关性
热点识别
Vehicle warning data
Global spatial autocorrelation
Local spatial autocorrelation
Hotspots identification