期刊文献+

Bi-block positive semidefiniteness of bi-block symmetric tensors

原文传递
导出
摘要 The positive definiteness of elasticity tensors plays an important role in the elasticity theory.In this paper,we consider the bi-block symmetric tensors,which contain elasticity tensors as a subclass.First,we define the bi-block M-eigenvalue of a bi-block symmetric tensor,and show that a bi-block symmetric tensor is bi-block positive(semi)definite if and only if its smallest bi-block M-eigenvalue is(nonnegative)positive.Then,we discuss the distribution of bi-block M-eigenvalues,by which we get a sufficient condition for judging bi-block positive(semi)definiteness of the bi-block symmetric tensor involved.Particularly,we show that several classes of bi-block symmetric tensors are bi-block positive definite or bi-block positive semidefinite,including bi-block(strictly)diagonally dominant symmetric tensors and bi-block symmetric(B)B0-tensors.These give easily checkable sufficient conditions for judging bi-block positive(semi)definiteness of a bi-block symmetric tensor.As a byproduct,we also obtain two easily checkable sufficient conditions for the strong ellipticity of elasticity tensors.
机构地区 School of Mathematics
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第1期141-169,共29页 中国高等学校学术文摘·数学(英文)
基金 The first author’s work was supported by the National Natural Science Foundation of China(Grant No.11871051).
  • 相关文献

参考文献3

二级参考文献26

  • 1Bazarra M S,Sherali H D,Shetty C M. Nonlinear Programming:Theory and Algorithms[M].{H}New York:John Wiley & Sons,Inc,1993.
  • 2Cox D,Little J,O'Shea D. Using Algebraic Geometry[M].{H}New York:Springer-Verlag,1998.
  • 3Dahl D,Leinass J M,Myrheim J,Ovrum E. A tensor product matrix approximation problem in quantum physics[J].{H}Linear Algebra and its Applications,2007.711-725.
  • 4Doherty A C,Parrilo P A,Spedalieri F M. Distinguishing separable and entangled states[J].{H}Physical Review Letters,2002.187904.
  • 5Einstein A,Podolsky B,Rosen N. Can quantum-mechanical description of physical reality be considered complete[J].{H}Physical Review,1935.777.
  • 6Gurvits L. Classical deterministic complexity of Edmonds' problem and quantum entanglement[A].New York:ACM,2003.10-19.
  • 7Han D,Dai H,Qi L. Conditions for strong ellipticity of anisotropic elastic materials[J].{H}Journal of Elasticity,2009.1-13.
  • 8Han D,Qi L,Wu Ed. Extreme diffusion values for non-Gaussian diffusions[J].Optim Methods Softw,2008.703-716.
  • 9Horodecki M,Horodecki P,Horodecki R. Separability of mixed states:Necessary and sufficient conditions[J].{H}Physics Letters A,1996.1-8.
  • 10Ioannou L M,Travaglione B C,Cheung D,Ekert K. Improved algorithm for quantum separability and entanglement detection[J].{H}Physical Review A,2004.060303.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部