摘要
近年来,机器学习理论和方法应用蓬勃发展,已在强对流天气监测和预报中广泛应用。各类机器学习算法,包括传统机器学习算法(如随机森林、决策树、支持向量机、神经网络等)和深度学习方法,已在强对流监测、短时临近预报、短期预报领域发挥了积极的重要作用,其应用效果往往明显优于依靠统计特征或者主观经验积累的传统方法。机器学习方法能够更有效提取高时空分辨率的中小尺度观测数据的强对流特征,为强对流监测提供更全面、更强大的自动识别和追踪能力;能够有效综合应用多源观测数据、分析数据和数值预报模式数据,为强对流临近预报预警提取更多有效信息;能够有效对数值模式预报进行释用和后处理,提升全球数值模式、高分辨率区域数值模式在强对流天气预报上的应用效果。最后,给出了目前机器学习方法应用中存在的问题和未来工作展望。
In recent years,the theory of machine learning and its applications to severe convective weather has been developed at an unprecedented speed.Various machine learning algorithms,such as random forest,decision tree,support vector machine,neural network and deep learning have played important roles in severe convective weather monitoring,nowcasting,short-term forecasting and short-range forecasting.These algorithms often have better performances than traditional methods.With the help of machine learning,it is easier to extract the mesoscale features of convective systems in high spatio-temporal resolution observation data,resulting in better performances of automatic convective weather identification and tracking and warning.Machine learning is also a good tool to effectively use the multi-source observation data,analyze the observation and numerical weather prediction(NWP)data.In addition,machine learning can also be an effective postprocessing method for NWP.It has been showed that machine learning can extract the features of severe weather occurrence from global or regional NWP data and give a reliable severe weather forecasts.Finally,the issues and outlooks of machine learning application are presented.
作者
周康辉
郑永光
韩雷
董万胜
ZHOU Kanghui;ZHENG Yongguang;HAN Lei;DONG Wansheng(National Meteorological Centre,Beijing 100081;College of Information Science and Engineering,Ocean University of China,Qingdao 266100;Chinese Academy of Meteorological Sciences,Beijing 100081)
出处
《气象》
CSCD
北大核心
2021年第3期274-289,共16页
Meteorological Monthly
基金
国家重点研发计划(2018YFC1507504和2017YFC1502003)
国家自然科学基金面上项目(41875005)
中国重点科技中长期发展战略研究领域战略研究项目(2019-ZCQ-06)共同资助。
关键词
强对流
预报
机器学习
深度学习
severe convection
forecast
machine learning
deep learning