摘要
通过改变蜂窝芯层的胞壁长度,利用试验和有限元模拟相结合的方法研究了梯度蜂窝夹芯板在准静态及动态冲击条件下的面外压缩过程和力学响应,计算结果表明,在准静态压缩过程中,梯度铝合金蜂窝夹芯板从相对密度低的层级向相对密度高的层级逐级变形,相对密度越高的层级所产生的塑性铰越多。而在高速冲击下,梯度蜂窝夹芯板的变形主要受冲击惯性的影响,梯度蜂窝夹芯板的变形与准静态下蜂窝夹芯板的变形存在明显的不同。并且当梯度率为0.0276时,梯度蜂窝夹芯板的吸能性达到最好,相较于同等质量的均质蜂窝夹芯板,能量吸收提高了10.63%,因此,对蜂窝夹芯板进行梯度设计可以有效提高其能量吸收能力。
By changing the cell wall length of honeycomb core layer,the outer plane compression process and mechanical response of gradient honeycomb sandwich panel under quasi-static and dynamic impact conditions were studied by combination method of test and finite element simulation.The calculation results show that during the quasi-static compression process,gradient aluminum alloy honeycomb sandwich panel is gradually deformed from the level with relatively low density to the level with relatively high density,and the larger the level of relative density is,the more the generated plastic hinges are.Under high-speed impact,the deformation of the gradient honeycomb sandwich panel is mainly affected by the impact inertia.The deformation of the gradient honeycomb sandwich panel is significantly different from the deformation of the honeycomb sandwich panel under quasi-static state.And when the gradient rate is 0.0276,the energy absorption of the gradient honeycomb sandwich panel is the best.Compared with the homogeneous honeycomb sandwich panel with the same mass,the energy absorption increases by 10.63%.Therefore,the gradient design of the honeycomb sandwich panel can effectively improve its energy absorption capacity.
作者
乔及森
孔海勇
苗红丽
李明
QIAO Ji-sen;KONG Hai-yong;MIAO Hong-li;LI Ming(College of Materials Science and Technology,Lanzhou University of Technology,Lanzhou 730050,China;State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,Lanzhou University of Technology,Lanzhou 730050,China)
出处
《塑性工程学报》
CAS
CSCD
北大核心
2021年第3期183-189,共7页
Journal of Plasticity Engineering
基金
沈阳材料科学国家研究中心-有色金属加工与再利用国家重点实验室联合基金资助项目(18LHPY007)
甘肃省中小企业创新基金资助项目(18CX6JA025)。
关键词
梯度蜂窝夹芯板
有限元
塑性铰
动态冲击
力学性能
gradient honeycomb sandwich panel
finite element
plastic hinge
dynamic impact
mechanical properties