摘要
引进并研究φ-平坦余挠理论,证明了该余挠理论是完全余挠理论。设R是φ-环,则φ-平坦余挠理论与经典平坦余挠理论相等当且仅当R是整环。作为应用,给出了非诣零凝聚环和φ-VN正则环的新刻画和φ-平坦模的包类性质;证明了每个R-模都有一个满的φ-平坦包当且仅当R是非诣零凝聚环,并且φ-平坦模关于子模封闭。
In this paper,theφ-flat cotorsion theory which is showed to be a perfect cotorsion theory is introduced and studied.Assume R is aφ-ring.It is proved that theφ-flat cotorsion theory coincides with the classical flat cotorsion theory if and only if R is a domain.As an application,new characterizations of Nonnil-coherent rings andφ-von Neumann rings are given.Finally,the envelope property ofφ-flat modules is investigated and showing that every R-module has a surjective(pre)envelope if and only if R is a Nonnil-coherent ring and allφ-flat R-modules are closed under submodules.
作者
张晓磊
赵伟
王芳贵
ZHANG Xiaolei;ZHAO Wei;WANG Fanggui(School of Mathematical Sciences,Sichuan Normal University,Chengdu Sichuan 610068,China;School of Mathematics and Computer Science,Aba Teachers University,Aba Sichuan 623002,China)
出处
《广西师范大学学报(自然科学版)》
CAS
北大核心
2021年第2期119-124,共6页
Journal of Guangxi Normal University:Natural Science Edition
基金
国家自然科学基金(11671283)。
关键词
余挠理论
盖类
包类
φ-平坦模
φ-余挠模
cotorsion theory
covering class
enveloping class
φ-flat module
φ-cotorsion module