期刊文献+

基于模拟退火的自适应正余弦算法 被引量:3

A self-adaptive sine and cosine algorithm based on simulated annealing
下载PDF
导出
摘要 为克服正余弦算法寻优精度低、收敛速度慢、易陷入局部最优等缺陷,提出一种基于模拟退火的自适应正余弦算法。设置自适应参数r1,根据粒子自适应值的状态,动态调整参数r1,以增强算法的局部搜索能力;在简化的正余弦算法的位置更新公式中引入对数递减的惯性权重,更好的平衡算法局部搜索与全局搜索的能力;为增加种群多样性,对当前最优解添加高斯扰动,并根据模拟退火中的Metropolis准则接受新解,以避免算法后期陷入局部最优。10个标准测试函数仿真结果表明,改进后算法在收敛速度、寻优精度上更具优势。 In order to overcome the shortcomings of the sine and cosine algorithm,such as low precision,slow convergence speed and being easy to fall into local optimum,a self-adaptive sine and cosine algorithm based on simulated annealing is proposed.Firstly,the self-adaptive parameters r1 are set and the parameters r1 are dynamically adjusted according to the state of the particle self-adaptive value to enhance the local search ability of the algorithm.Secondly,logarithm is introduced into the simplified position update formula of the sine and cosine algorithm.Finally,in order to increase the diversity of population,Gaussian perturbation is added to the current optimal solution,and a new solution is accepted according to Metropolis criterion in simulated annealing,so as to avoid the algorithm′s falling into local optimum.The simulation results of 10 standard test functions show that the improved algorithm has more advantages in convergence speed and optimization accuracy.
作者 张娜 贺兴时 ZHANG Na;HE Xingshi(School of Science, Xi’an Polytechnic University, Xi’an 710048, China)
出处 《纺织高校基础科学学报》 CAS 2021年第1期84-90,107,共8页 Basic Sciences Journal of Textile Universities
基金 陕西省科技厅重点项目(2018kW-021) 西安工程大学研究生创新基金(CHX2020032)。
关键词 正余弦算法 高斯扰动 模拟退火算法 自适应 惯性权重 sine and cosine algorithm Gaussian disturbance simulated annealing algorithm self-adaptive inertia weight
  • 相关文献

参考文献11

二级参考文献122

  • 1赵世安,黄敢基.模拟退火并行粒子群优化算法程序设计与研究[J].百色学院学报,2006,19(6):9-12. 被引量:8
  • 2赵先章,常红星,曾隽芳,高一波.一种基于粒子群算法的移动机器人路径规划方法[J].计算机应用研究,2007,24(3):181-183. 被引量:22
  • 3王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 4康立山,谢云,尤矢勇.非数值并行算法--模拟退火算法[M]. 北京:科学出版社,1997.
  • 5YANG Xin-she. A new met heuristic bat-inspired algorithm [ C ]// Nature Inspired Cooperative Strategies for Optimization. 2010 : 65-74.
  • 6YANG Xin-she. Bat algorithm for muhiobjective optimization [ J ]. International Journal Bio-lnspired Computation, 2011, 3 ( 5 ) : 267- 274.
  • 7李枝勇,马良,张惠珍.遗传变异蝙蝠算法在0-1背包问题上的应用[J/OL].[2012-10-11].http://www.cnki.net/kcms/detail/11.2127.TP.20121011.1019.027.html.
  • 8LEMMA T A, BIN M H F. Use of fuzzy systems and bat algorithm forenergy modeling in a gas turbine generator [ C ]//Proc of IEEE Collo- quium on Humanities, Science and Engineering. 2011 : 305- 310.
  • 9YANG Xin-she, GANDOMI A H. Bat algorithm: a novel approach for global engineering optimization [ J]. Engineering Computations, 2012,99(5) : 464-483.
  • 10MISHRA S, SHAWK, MISHRA D. A new metaheuristic classifica- tion approach for microarray data[ J]. Procedia Technology,2012, 4(1) : 802-806.

共引文献140

同被引文献40

引证文献3

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部