期刊文献+

深度域适应综述:一般情况与复杂情况 被引量:32

A Review of Deep Domain Adaptation:General Situation and Complex Situation
下载PDF
导出
摘要 信息时代产生的大量数据使机器学习技术成功地应用于许多领域.大多数机器学习技术需要满足训练集与测试集独立同分布的假设,但在实际应用中这个假设很难满足.域适应是一种在训练集和测试集不满足独立同分布条件下的机器学习技术.一般情况下的域适应只适用于源域目标域特征空间与标签空间都相同的情况,然而实际上这个条件很难满足.为了增强域适应技术的适用性,复杂情况下的域适应逐渐成为研究热点,其中标签空间不一致和复杂目标域情况下的域适应技术是近年来的新兴方向.随着深度学习技术的崛起,深度域适应已经成为域适应研究领域中的主流方法.本文对一般情况与复杂情况下的深度域适应的研究进展进行综述,对其缺点进行总结,并对其未来的发展趋势进行预测.首先对迁移学习相关概念进行介绍,然后分别对一般情况与复杂情况下的域适应、域适应技术的应用以及域适应方法性能的实验结果进行综述,最后对域适应领域的未来发展趋势进行展望并对全文内容进行总结. The large amount of data generated in the information age enables machine learning to be successfully applied in many fields.Most machine learning techniques need to meet the assumption that the training set and the test set are independent and identically distributed,but in practice this assumption is difficult to meet.Domain adaptation is a machine learning technology in which the training set and test set do not need to satisfy the condition of independent and identical distribution.The general domain adaptation is only applicable to the case where feature space and label space of the source domain and target domain are the same,but in fact this condition is difficult to meet.In order to enhance the applicability of domain adaptation,domain adaptation under complex conditions has gradually become a research hotspot.Domain adaptation under the condition of inconsistent label space and complex target domain is an emerging direction in recent years.With the rise of deep learning technology,deep domain adaptation has become the mainstream method in the field of domain adaptation research.This article reviews the research progress of deep domain adaptation in general and complex situations,summarizes their shortcomings,and predicts their future development trends.This article firstly introduces the concepts of transfer learning,and then summarizes domain adaptation in general and complex situations,the application of domain adaptation technology and the performance of domain adaptation methods,finally prospects the development trend of the domain adaptation field and summarizes the content of the full text.
作者 范苍宁 刘鹏 肖婷 赵巍 唐降龙 FAN Cang-Ning;LIU Peng;XIAO Ting;ZHAO Wei;TANG Xiang-Long(Pattern Recognition and Intelligent System Research Center,School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001)
出处 《自动化学报》 EI CAS CSCD 北大核心 2021年第3期515-548,共34页 Acta Automatica Sinica
基金 国家自然科学基金(61671175) 四川省科技计划项目基金(2019YFS0069) 空间智能控制技术重点实验室基金(ZDSXS-2018-02)资助。
关键词 域适应 迁移学习 深度域适应 深度学习 机器学习 Domain adaptation transfer learning deep domain adaptation deep learning machine learning
  • 相关文献

参考文献4

二级参考文献44

  • 1邓乃阳,田英杰.数据挖掘中的新方法-支持向量机.科学出版社,北京,2004.
  • 2Ozawa S, Roy A, Roussinov D. A multitask learning model for online pattern recognition. IEEE Transactions on Neural Networks, 2009, 20(3): 430-445.
  • 3Xu Z J, Sun S L. Multi-source Transfer Learning with Multi-view Adaboost [Online], available: http://www.cst. ecnu.edu.cn/ slsun/pubs/MvTransfer.pdf, November 7-9, 2006.
  • 4Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
  • 5Quanz B, Huan J. Large margin transductive transfer learning. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM). New York, USA: ACM, 2009. 1327-1336.
  • 6Zhang D, He J R, Liu Y, Si L, Lawrence R D. Multi-view transfer learning with a large margin approach. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). New York, USA: ACM, 2011. 1208-1216.
  • 7Xu Z J, Sun S L. Multi-view Transfer learning with adaboost. In: Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI). New York, USA: IEEE, 2011. 399-402.
  • 8Perez-Cruz F. Kullback-Leibler divergence estimation of continuous distributions. In: Proceedings of the 2008 IEEE International Symposium on Information Theory (ISIT) 2008. New York, USA: IEEE, 2008. 1666-1670.
  • 9Borgwardt K M, Gretton A, Rasch M J, Kriegel H P, Sch?lkopf B, Smola A J. Integrating structured biological data by kernel maximum mean discrepancy. In: Proceedings of the 14th International Conference on Intelligent Systems for Molecular Biology (ISMB). California, USA: ISCB, 2006. e49-e57.
  • 10Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco, CA: Morgan Kaufmann Publishers, 1999. 200-209.

共引文献45

同被引文献96

引证文献32

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部