摘要
针对流量分类效果与实际情况存在偏差的问题,首先将多模态深度学习运用在流量分类中,通过利用多模态之间的互补性,剔除模态间的冗余,从而学习到更好的流量数据特征表示。然后,提出了一种基于多模态流量数据的检测和分类方法,对同一流量单位的不同模态输入分别采用卷积神经网络(Convolutional Neural Networks,CNN)和长短期记忆网络(Long Short-Term Memory,LSTM)进行训练,以充分学习流量数据模态间和模态内信息的相互依赖性,克服现有单模态分类器的局限,从而支持更为复杂的现代网络应用场景。
aiming at the deviation of network traffic classification effect from the actual situation,we apply Multimodality Fusion Technology to learn a better feature representation of the traffic data firstly.Then we proposed a multimodal deep learning based traffic classifier using Convolutional Neutral Networks and Long Short-term Memory Recurrent Networks to learn both intra-and inter-modality dependences of traffic data.This approach can overcome performance limitations of existing single-modality deep learning based traffic classification proposals,and support more challenging traffic scenarios.
作者
焦利彬
王猛
霍永华
JIAO Libin;WANG Meng;HUO Yonghua(The 54th Research Institute of CETC,Shijiazhuang 050081,China;The Military Representative of He Rocket Army Equipment Department in Langfang District,Langfang 065000,China)
出处
《无线电通信技术》
2021年第2期215-219,共5页
Radio Communications Technology
基金
装发重点实验室基金项目(6142104200106)。
关键词
流量识别
流量分类
深度学习
多模态融合
traffic recognition
traffic classification
deep learning
multimodality fusion technology