期刊文献+

结合FDM与STLBP-IP特征的微表情识别 被引量:1

Micro-expression Recognition Combined with FDM and STLBP-IP Features
下载PDF
导出
摘要 针对面部动力谱(FDM)特征易受光照影响、对运动信息描述不准确的缺陷,提出基于FDM特征与时空局部二值模式积分投影(STLBP-IP)特征相结合的微表情识别方法。将FDM特征与STLBP-IP特征相结合,在弥补FDM对运动信息描述不足的同时对人脸面部信息进行补充描述以提升识别率。使用支持向量机进行分类,在SMIC和CASMEⅡ微表情数据库上进行实验。实验结果表明,该算法识别率有所提高,分别达到57.14%和64.59%。 Focusing on the problem that the facial dynamics map(FDM)feature is susceptible to the influence of light,and thus motion information tracking is inaccurate,a fusion method combining FDM with spatiotemporal local binary pattern with integral projection(STLBP-IP)is proposed for micro-expression recognition.This paper combines FDM features with STLBP-IP features to make up for the lack of FDM's description of motion information,while also supplementing the description of facial information to improve the rec⁃ognition rate.Adopting a support vector machine as classifier,and experiments on SMIC and CASMEⅡmicro-expression database.The experimental results show that the recognition rate of the algorithm discussed in this paper has improved,reaching 57.14%and 64.59%respectively.
作者 韦丽娟 梁建娟 刘洪 刘本永 WEI Li-juan;LIANG Jian-juan;LIU Hong;LIU Ben-yong(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《软件导刊》 2021年第4期32-35,共4页 Software Guide
基金 国家自然科学基金项目(60862003) 贵州省科研基金项目(黔科合基础[2019]1063号) 贵州大学引进人才科研项目(贵大人基合同字(2017)13号、14号)。
关键词 微表情识别 机器视觉 面部动力谱 时空局部二值模式积分投影 支持向量机 micro-expression recognition machine vision facial dynamics map spatiotemporal local binary pattern with integral projection support vector machine
  • 相关文献

参考文献6

二级参考文献34

  • 1PORTER S, TEN BRINKE L. Reading between the Lies Identifying Concealed and Falsified Emotions in Universal Facial Expressions[ J]. Psychological Science, 2008, 19(5) : 508-514.
  • 2HAGGARD E A, ISAACS K S. Micromomentary Facial Expressions as Indicators of Ego Mechanisms in Psychotherapy [ C ]// Methods of Research in Psychotherapy. New York, US: Springer, 1966: 154-165.
  • 3EKMAN P, FRIESEN W ~. Nonverbal Leakage and Clues to Deception [ J]. Psychiatry, 1969, 32( 1 ) : 88-106.
  • 4ZHANG M, FU Q, CHEN Y H, et al. Emotional Context Influences Micro-Expression Recognition [ J ]. Plos One, 2014, 9(4) : 1-4.
  • 5POLIKOVSKY S, KAMEDA Y, OHTA Y. Facial Micro-Expressions Recognition Using High Speed Camera and 3d-GradientDescriptor [ C ]//The 3rd International Conference on Crime Detection and Prevention ( ICDP 2009). London, UK: IET, 2009 : 1-6.
  • 6SHREVE M, GODAVARTHY S, MANOHAR V, et al. Towards Macro-and Micro-Expression Spotting in Video Using Strain Patterns [ C ]//2009 Workshop on Applications of Computer Vision (WACV). Piscataway, NJ : IEEE, 2009 : 1-6.
  • 7SHREVE M, GODAVARTHY S, GOLDGOF D, et al. Macro-and Micro-Expression Spotting in Long Videos Using Spatio- Temporal Strain [ C] //2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011). Piscataway, NJ: IEEE, 2011 : 51-56.
  • 8PFISTER T, LI X, ZHAO G, et al. Differentiating Spontaneous from Posed Facial Expressions within a Generic Facial Expression Recognition Framework [ C] //2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). Piscataway, NJ: IEEE, 2011: 868-875.
  • 9WU Q, SHEN X, FU X. The Machine Knows What You are Hiding: An Automatic Micro-Expression Recognition System [ C ] //Affective Computing and Intelligent Interaction. Berlin/Heidelberg: Springer, 2011 : 152-162.
  • 10WANG S J, CHEN H L, YAN W J, et al. Face Recognition and Micro-Expression Recognition Based on Discriminant Tensor Subspace Analysis Plus Extreme Learning Machine [ J ]. Neural Processing Letters, 2014, 39 (1) : 25-43.

共引文献66

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部