期刊文献+

改进粒子群优化的多类LS-SVM电机故障识别算法 被引量:5

Fault Diagnosis Algorithm of Multi-LS-SVM Classifier Electric Machine Based on Modified PSO
下载PDF
导出
摘要 传统电机故障诊断方法具有不确定性。多类LS-SVM方法所需样本较少、识别率高,可有效识别电机故障,但该方法计算过程中有庞大的矩阵求逆运算。为降低计算数据复杂度、提升训练速度,提出基于改进粒子群算法的电机故障识别算法。该算法依据种群收敛程度与个体自适应值调整惯性权重,选择一对余的LSSVM多分类器结构,构造4个改进粒子群的多类LS-SVM分类器,识别电机4类故障。实验验证表明,该算法可保证电机故障识别结果准确率,具有较好的实用性和推广性。 The traditional motor fault diagnosis method has uncertainty.The multi class LS-SVM method needs less samples and has high recognition rate,which can effectively identify motor faults.However,there is a huge matrix inversion operation in the calculation process of this method.Aiming at adjusting inertia weight and thus accelerating the training speed through convergence of swarm and in⁃dividual fitness,this article proposes the modified PSO.By iteratively solving the matrix in LS-SVM through adaptive PSO,the prob⁃lem of solving inverse matrix is avoided and the memory is saved.In order to distinguish between 4 faults for electric machine quickly and accurately,one-against-rest LS-SVM multiple classifier structure is chosen in the model to build 4 LS-SVM classifiers based modified PSO.Diagnosis test results show that the proposed method has high classification accuracy,which proves its effectiveness and usefulness.
作者 陈义 郭香蓉 王世峰 CHEN Yi;GUO Xiang-rong;WANG Shi-feng(Automotive Engineering School,Hunan Industry Polytechnic,Changsha 410208,China;School of Electrical&Information Engineering,Changsha University of Science and Technology,Changsha 410004,China)
出处 《软件导刊》 2021年第4期81-84,共4页 Software Guide
基金 湖南工业职业技术学院自然科学一般资助项目(GYKYZ201719)。
关键词 故障识别 电机 最小二乘支持向量机 粒子群优化 多分类器 fault diagnosis electric machine least squares support vector machine particle swarm optimization multi-classifier
  • 相关文献

参考文献2

二级参考文献17

  • 1王渝红,黄雯莹,任震,杨桦.离散二进小波变换及其在电机故障分析中的应用[J].电力系统自动化,1995,19(12):20-24. 被引量:20
  • 2沈标正.电机故障诊断技术[M].北京:机械工业出版社,1995..
  • 3韦巍 高健.电机故障在线诊断的新进展[J].东南大学学报,1997,27(5).
  • 4中国电机技术学会.电工高新技术从书(第5分册)[M].北京:机械工业出版社,..
  • 5张立明.人工神经网络系统理论[M].上海:复旦大学出版社,1993..
  • 6沈标正.电机故障诊断技术[M].北京:机械工业出版社,2003.
  • 7Subbasis Nandi. Fault analysis for condition monitoring of induction motors [ D ]. Texas A&M University. 2000.
  • 8Andrzej M. Trzynadlowski E R. Comparative investigation of diagnostic media for induction motors:a case of rotor cage faults [ J ]. IEEE Trans on Industrial Electronics, 2000.47(5 ) : 1092-1099.
  • 9Subhasis N, Toliyiat H A. Condition monitoring and fault diagnosis of electrical machines-A review [ C]// In Conference Record IEEE-IAS. Annual meeting, Phoenix, AZ, 1999 : 197-204.
  • 10叶昊,王桂增,方崇智.小波变换在故障检测中的应用[J].自动化学报,1997,23(6):736-741. 被引量:90

共引文献34

同被引文献87

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部