期刊文献+

The effect of the 18R-LPSO phase on the fatigue behavior of extruded Mg/LPSO two-phase alloy through a comparative experimental-numerical study 被引量:3

下载PDF
导出
摘要 The fatigue behavior of four extruded Mg-Y-Zn alloys containing different volume fractions of long-period stacking ordered(LPSO)grains was investigated through a comparative study combining experiments and crystal plasticity finite element simulations.Strain controlled low-cycle fatigue experiments were conducted at different strain amplitudes and revealed a limited cyclic hardening in Mg_(89)Zn_(4)Y_(7)alloy or softening in Mg_(99.2)Zn_(0.2)Y_(0.6)and Mg_(97)Zn_(1)Y_(2)alloys.A decrease in the fatigue life against the plastic strain with the increase in LPSO phase volume fraction was observed and was related the limited ductility of extruded LPSO grains.Stress-strain hysteresis curves were used to calibrate and validate a crystal plasticity model taking into account twinning and detwinning.The interaction of the different phases on the distribution of local micro-mechanical fields at the grain scale was then analyzed on synthetic microstructures under strain-controlled conditions.Deformation twinning activity was predicted in coarse unrecrystallized grains and tended to disappear with the increase in the LPSO phase volume fraction.Cleavage-like facets observed in LPSO grains were related to high tensile stress,especially at the Mg/LPSO interface,due to the limited number of deformation mechanisms in LPSO crystal to accommodate out-of-basal plane strain.The increase of the fatigue limit with the increase in LPSO phase volume fraction was finally associated with the decreasing presence of coarse unrecrystallizedα-Mg grains due to a higher dynamic recrystallization activity during the extrusion process.
出处 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期130-143,共14页 镁合金学报(英文)
基金 This work was partially supported by the JSPS KAKENHI for Scientific Research on Innovative Areas”MFS Materials Science”(Grant no.JP18H05478) the JSPS KAKENHI for Early-Career Scientists(Grant no.20K14604).
  • 相关文献

同被引文献30

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部