期刊文献+

基于SinGAN的岩石薄片图像超分辨率重建 被引量:6

Super-resolution Reconstruction of Rock Slice Image Based on SinGAN
下载PDF
导出
摘要 岩石薄片图像对研究石油地质特性以及油气勘探都有重要的意义。由于各种因素的限制,获取到的岩石薄片图像经常会出现分辨率较低的情况,一定程度上限制了研究者对其细节信息的掌握。而一般的神经网络超分辨率算法都需要大量的数据作为训练集,为了提升岩石薄片图像超分辨率重建算法纹理细节信息还原能力,本文利用单图像生成式对抗网络,不需输入大量数据集,对岩石薄片图像进行超分辨率重建。采用鄂尔多斯某油区岩石铸体薄片图像进行训练,通过峰值信噪比(Peak Signal to Noise Ratio,SSNR)和结构相似性(Structural Similarity,SSIM)评价指标进行模型评价,实验结果表明:该方法超分辨率处理的图像在视觉效果和评价指标上均具有良好的效果。 The rock slice images are of great significance to the study of petroleum geological characteristics and the exploration of oil and gas.Due to the limitations of various factors,the obtained images of rock slices often have low resolution,which limits the researchers'grasp of their detailed information to some extent.General super-resolution algorithm of neural network will need a large amount of data as a training set,and in order to improve the ability of rock slice image super-resolution reconstruction algorithm to the restoration of the texture detail information of rock slice images,in this paper,the super-resolution reconstruction of single rock slice image is finished using single image generative adversarial network without inputting a large number of data sets.Rock cast thin section images from an oilfield area in Ordos were processed using this method,and the processing results are evaluated by the indexes of peak signal-to-noise ratio(PSNR)and structural similarity(SSIM)evaluation.It is shown that the processed images using this method has good visual effects and evaluation indexes.
作者 程国建 张福临 CHENG Guojian;ZHANG Fulin(School of Computer Science,Xi’an Shiyou University,Xi’an,Shaanxi 710065,China)
出处 《西安石油大学学报(自然科学版)》 CAS 北大核心 2021年第2期116-121,共6页 Journal of Xi’an Shiyou University(Natural Science Edition)
基金 国家自然科学基金(51674197,51874239)。
关键词 岩石薄片图像 神经网络 超分辨率重建 SinGAN rock slice image neural network super-resolution reconstruction single image generation adversarial network
  • 相关文献

参考文献5

二级参考文献48

  • 1Mf J. Scientists see promise in deep learning programs[N]. The New York Time,2012-11-23.
  • 2HtNtON G E, SALAKHUTDINOV R. Reducing the dimension-ality of data with neural networks[J]. Science, 2006,313 (5786):504-507.
  • 3MOHAMED, HINTON G E,PENN G. Understanding how deepbelief networks perfom acoustic modeling [ M]. kyoto: ICASSP,2012.
  • 4SWARUP CHAUHAN, WOLFRAM RUHAAK, FAISAL KHAN,et al. Processing of rock core microtomography images : using seven dif-ferent machine learning algorithms[J]. Computers&Geosciences 2016(86):120-128.
  • 5HEIKO ANDR A,NICOLAS COMBARET, JACK DVORKIN,etal. Digital rock physics benchmarks-part I: imaging and segmen-tation[J]? Computers Geosciences,2013(50) :25-32.
  • 6HEIKO ANDRA, NICOLAS COMBARET, JACK DVORKIN,etal. Digital rock physics benchmark-part H : computing effectiveproperties[J]. Computers ^Geosciences, 2013( 50) : 33-34.
  • 7HINTON G E, OSINDERO S, THE Y. A fastarkof learning algo-rithm for deep belief nets[J].. Neural Computation, 2006 ,18(7):1527-1544.
  • 8HINTON G E. Learning multiple layers of representation [J].Trends in Cognitive Sciences, 2007 ,11(10) :428-434.
  • 9LECUN Y, KAVUKCUOGLUK, FARABET C, Convolutionalnetworks and applications in vision[C]. IEEE International Sym-posium on Circuits and Systems . 2010 . 253-256.
  • 10KRIZHEVSKY A* SUTSKEVER I,HINTON G E. ImageNetclassification with deep convolutional neural networks [C]. Ad-vances in Neural Information Processing Syetems, Annual Con-ference ? Lake Tahoe * Nevada,2012:1097-1105.

共引文献64

同被引文献47

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部