期刊文献+

基于社会经济水平、人口流动和疫情防控措施评估我国主要城市应对2019冠状病毒病的策略 被引量:3

Impact of socioeconomic status,population mobility and control measures on COVID-10 development in major cities of China
下载PDF
导出
摘要 目的:评估我国主要城市社会经济水平、人口流动和疫情防控措施对2019冠状病毒病(COVID-19)疫情初期发展的影响。方法:对湖北省以外地区截至2020年2月19日COVID-19累计确诊病例数最多的51个城市的COVID-19每日新增感染率趋势进行时间序列聚类分析,并从社会经济水平、人口流动和疫情防控措施三方面进行评估。结果:在51个城市中共识别出4种不同类别的疫情发展模式,包括高峰模式(新余)、晚发高峰模式(甘孜州)、中高峰模式(温州等13个城市)和趋势缓和稳定模式(杭州等36个城市)。4种模式以及同种模式不同城市的指标得分分布均有差异。结论:中国各城市的COVID-19疫情发展模式差异较大,可能是受城市社会经济水平、人口流动和疫情防控措施等多方面影响。及时的卫生应急措施和城市内部人口流动控制可能影响COVID-19疫情发展模式,高风险地区人口迁入强度对COVID-19累计确诊病例数有较大影响。 Objective:To evaluate the impact of socioeconomic status,population mobility,prevention and control measures on the early-stage coronavirus disease 2019(COVID-19)development in major cities of China.Methods:The rate of daily new confirmed COVID-19 cases in the 51 cities with the largest number of cumulative confirmed cases as of February 19,2020(except those in Hubei province)were collected and analyzed using the time series cluster analysis.It was then assessed according to three aspects,that is,socioeconomic status,population mobility,and control measures for the pandemic.Results:According to the analysis on the 51 cities,4 development patterns of COVID-19 were obtained,including a high-incidence pattern(in Xinyu),a late high-incidence pattern(in Ganzi),a moderate incidence pattern(in Wenzhou and other 12 cities),and a low and stable incidence pattern(in Hangzhou and other 35 cities).Cities with different types and within the same type both had different scores on the three aspects.Conclusion:There were relatively large difference on the COVID-19 development among different cities in China,possibly affected by socioeconomic status,population mobility and prevention and control measures that were taken.Therefore,a timely public health emergency response and travel restriction measures inside the city can interfere the development of the pandemic.Population flow from high risk area can largely affect the number of cumulative confirmed cases.
作者 王思思 叶元庆 徐小林 王思聪 徐欣 袁长征 李舒 曹淑殷 李文渊 陈辰 胡可嘉 雷浩 朱慧 祝勇 吴息凤 WANG Sisi;YE Yuanqing;XU Xiaolin;WANG Sicong;XU Xin;YUAN Changzheng;LI Shu;CAO Shuyin;LI Wenyuan;CHEN Chen;HU Kejia;LEI Hao;ZHU Hui;ZHU Yong;WU Xifeng(Center for Biostatistics,Bioinformatics and Big Data,the Second Affiliated Hospital,Zhejiang University School of Medicine,Hangzhou 310009,China;Department of Big Data in Health Science,School of Public Health,Zhejiang University School of Medicine,Hangzhou 310058,China;National Institute for Data Science in Health and Medicine,Zhejiang University,Hangzhou 310058,China;Zhejiang University School of Medicine,Hangzhou 310058,China;Yale School of Public Health,Yale University,New Haven 06520,Connecticut,USA)
出处 《浙江大学学报(医学版)》 CAS CSCD 北大核心 2021年第1期52-60,共9页 Journal of Zhejiang University(Medical Sciences)
基金 浙江大学新型冠状病毒(2019-nCoV)肺炎应急科研专项(2020XGZX003) 浙江省创新团队(2019R01007) 浙江省重点实验室(2020E10004) 浙江省自然科学基金(LEZ20H260002)。
关键词 2019冠状病毒病 中国 社会经济 人口流动 防控措施 聚类分析 Coronavirus disease 2019 China Socioeconomic status Population flows Control measures Cluster analysis
  • 相关文献

参考文献1

共引文献2

同被引文献54

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部