摘要
研究了形式三角矩阵半环Tri(R,M,S)的导子和高阶导子.证明了半环Tri(R,M,S)的任一导子可由半环R,S的导子和(R,S)-双半模M的一个拟同态来表示;半环Tri(R,M,S)的任一高阶导子可由半环R,S的高阶导子和(R,S)-双半模M中满足一定条件的一族可加映射来表示.
The derivations and the higher derivations of a formal triangular matrix semiring Tri(R,M,S)are studied in this paper,and it is proved that any derivation of the semiring Tri(R,M,S)can be expressed by a derivation of the semiring R and a derivation of the semiring S and a quasi-homomorphism of the(R,S)-bi-semimodule M,and that any higher derivation of Tri(R,M,S)can be expressed by a higher derivation of Rand a higher derivation of S and a family of additive mappings of the(R,S)-bi-semimodule M which satisfy some conditions.
作者
张源野
谭宜家
ZHANG Yuanye;TAN Yijia(College of Mathematics and Computer Science,Fuzhou University,350108,Fuzhou,Fujian,PRC)
出处
《曲阜师范大学学报(自然科学版)》
CAS
2021年第2期7-12,共6页
Journal of Qufu Normal University(Natural Science)
基金
国家自然科学基金面上项目(11971111)
福建省自然科学基金面上项目(2016J01012).
关键词
导子
高阶导子
半环
形式三角矩阵半环
半模
derivation
higher derivation
semiring
formal triangular matrix semiring
semimodule