期刊文献+

形式三角矩阵半环的导子与高阶导子 被引量:3

On derivations and higher derivations of a formal triangular matrix semiring
下载PDF
导出
摘要 研究了形式三角矩阵半环Tri(R,M,S)的导子和高阶导子.证明了半环Tri(R,M,S)的任一导子可由半环R,S的导子和(R,S)-双半模M的一个拟同态来表示;半环Tri(R,M,S)的任一高阶导子可由半环R,S的高阶导子和(R,S)-双半模M中满足一定条件的一族可加映射来表示. The derivations and the higher derivations of a formal triangular matrix semiring Tri(R,M,S)are studied in this paper,and it is proved that any derivation of the semiring Tri(R,M,S)can be expressed by a derivation of the semiring R and a derivation of the semiring S and a quasi-homomorphism of the(R,S)-bi-semimodule M,and that any higher derivation of Tri(R,M,S)can be expressed by a higher derivation of Rand a higher derivation of S and a family of additive mappings of the(R,S)-bi-semimodule M which satisfy some conditions.
作者 张源野 谭宜家 ZHANG Yuanye;TAN Yijia(College of Mathematics and Computer Science,Fuzhou University,350108,Fuzhou,Fujian,PRC)
出处 《曲阜师范大学学报(自然科学版)》 CAS 2021年第2期7-12,共6页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金面上项目(11971111) 福建省自然科学基金面上项目(2016J01012).
关键词 导子 高阶导子 半环 形式三角矩阵半环 半模 derivation higher derivation semiring formal triangular matrix semiring semimodule
  • 相关文献

参考文献2

二级参考文献13

  • 1Haghany A.,Varajan K..Study of formal triangular matrix rings[J].Comm.Algebra.1999,27(11):5507-5525.
  • 2Cheung W.S..Commuting maps of triangular algebras[J].J.London Math.Soc.2001,63(2):117-127.
  • 3Coelho S.P.,Milies C.P..Derivations of upper triangular matrix rings[J].Linear Algebra Appl.1993,187:263-267.
  • 4CaoY.A.,Wang J.T..A note on algebra automorphisms of strictly upper triangular matrices over commutative rings[J].Linear Algebra Appl.2000,311:187-193.
  • 5Jondrup S..The group of automorphisms of certain subalgebras of matrix algebras[J].J.Algebra,1991,141:106-114.
  • 6Jondrup S..Automorphisms and derivations of upper triangular matrix rings[J].Linear Algebra Appl.,1995,221:205-218.
  • 7Kezlan T.P..A note on algebra automorphisms of triangular matrices over commutative rings[J].Linear Algebra Appl.,1990,135:181-184.
  • 8Krylov P A,Tuganbaev A A. Modules over formal matrix rings [ J ]. J Math Sci,2010,171 (2) : 248-295.
  • 9Ghahramani H. Skew polynominal rings of formal triangular matrix rings[J].J Algebra, 2012,349 : 201-216.
  • 10Haghany A, Varadarajan K. Study of modules over formal triangular matrix rings [ J ]. J Pure Appl Algebra,2000,147:41-58.

共引文献12

同被引文献11

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部