期刊文献+

一种基于用户行为模式的匿名数据鉴定方法 被引量:1

An Anonymous Data Authentication Method Based on User Behavior Pattern
下载PDF
导出
摘要 针对匿名用户数据的海量性与冗余性等特点,为提高数字证据的用户身份鉴定性能,文章提出基于用户行为模式的匿名数据鉴定方法。首先,文章研究了基于BIDE算法的用户频繁行为模式挖掘方法,为数据鉴定提供了高质量的用户频繁序列行为模式库。然后,采用基于最长公共子序列的相似度方法得到模式综合相似度,全面描述用户数据之间的吻合程度。最后,分别使用Web浏览数据集和Unix操作命令行数据集进行实验,结果表明,文章所提出的数字证据鉴定方法具有良好的适用性和计算效率,为匿名数据的同一鉴定提供了技术支撑。 Aiming at the characteristics of massive and redundant anonymous user data,in order to improve the performance of user identification based on digital evidence,this paper proposes an anonymous data authentication method based on user behavior pattern.Firstly,this paper studies the mining method of frequent user behavior patterns based on BIDE algorithm,which provides a high-quality user frequent sequence behavior pattern library for data authentication.Then,the similarity method based on the longest common subsequence is used to obtain the comprehensive similarity of patterns,which can comprehensively describe the matching degree between user data.Finally,experiments are carried out using Web browsing data set and Unix operating command line data set.The results show that the proposed digital evidence authentication method has good applicability and computational efficiency,which provides technical support for the same authentication of anonymous data.
作者 刘延华 刘志煌 LIU Yanhua;LIU Zhihuang(College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China;Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing,Fuzhou 350108,China)
出处 《信息网络安全》 CSCD 北大核心 2021年第3期44-52,共9页 Netinfo Security
基金 国家自然科学基金[61772136] 福建省大数据应用技术重大研发平台项目[2014H2005] 福建省科技厅重点项目[2014H0024]。
关键词 数据鉴定 数字证据 BIDE 用户行为模式 相似度 data authentication digital evidence BIDE user behavior pattern similarity
  • 相关文献

参考文献3

二级参考文献31

  • 1Shawky D M, Ali A F. An approach for assessing similarity metrics used in metric-based clone detec- tion techniques[C]///The 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), Chengdu,2010: 580-584.
  • 2Brixtel R, Fontaine M, Lesner B, et al. Language- independent clone detection applied to plagiarism de- tection[C]//The 10th IEEE Working Conference on Source Code Analysis and Manipulation (SCAM), Timisoara, 2010 : 77-86.
  • 3Dang Y, Ge S, Huang R, et al. Code clone detec- tion experience at Microsoft[C]//Proceedings of the 5th International Workshop on Software Clones, ACM, 2011: 63-64.
  • 4Zibran M F, Roy C K. IDE-based real-time focused search for near-miss clones[C]///Proceedings of the 27th Annual ACM Symposium on Applied Compu- ting, ACM, 2012: 1235-1242.
  • 5Higo Y, Kamiya T, Kusumoto S, et al. Method and implementation for investigating code clones in a software system [J]. Information and Software Technology, 2007, 49(9): 985-998.
  • 6Schleimer S, Wilkerson D S, Aiken A. Winnowing: local algorithms for document fingerprinting[C]// Proceedings of the ACM SIGMOD International Conference on Management of Data, ACM, 2003: 76-85.
  • 7Wang J, Han J. BIDE: efficient mining of frequent closed sequences[C]//IEEE 20th International Con- ference on Data Engineering, 2004: 79-90.
  • 8Sun Liwen, Cheng R, Cheung D W, et al. Mining uncertain data with probabilistic guarantees[C] //Proc of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2010:273-282.
  • 9Liu Yingho. Mining frequent patterns from univariate uncertain data[J] . Data & Knowledge Engineering, 2012, 71(1):47-68.
  • 10Muzammal M, Raman R. Mining sequential patterns from probabilistic databases[C] //Advances in Knowledge Discovery and Data Mining. Berlin:Springer, 2011:210-221.

共引文献9

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部