期刊文献+

基于NOMA的上行MTC无线资源分配方案

Radio resource allocation scheme for uplink MTC based on NOMA
下载PDF
导出
摘要 为解决机器类通信中不同服务质量(QoS)要求的设备接入问题,提出一种基于非正交多址接入技术的资源分配方案。面向高可靠低时延通信(URLLC)提出一种基于双向匹配的子载波分配算法;面向大规模机器类通信(mMTC)提出一种基于自适应遗传算法(AGA)的资源分配方案,改进染色体编码规则和适应度函数的惩罚因子。仿真结果表明,所提方案相比子载波分配次优匹配(SOMSA)方案功率平均降低4.59 dBm,能有效解决不同QoS要求的设备接入,降低mMTC设备功耗。 To solve the equipment access of different quality of service(QoS)requirements in machine type communication,a resource allocation scheme based on non-orthogonal multiple access technology was proposed.A subcarrier allocation algorithm based on two-way matching was proposed for ultra-reliable low latency communications(URLLC)devices.A resource allocation scheme based on adaptive genetic algorithm(AGA)was proposed for massive machine type communication(mMTC)devices,and chromosome coding rules and penalty factors were improved for fitness functions.Simulation results show that the proposed scheme reduces the average power of the subcarrier allocation sub-optimal matching(SOMSA)scheme by 4.59 dBm,which can effectively solve the equipment access with different QoS requirements and reduce the power consumption of mMTC equipment.
作者 马莉 王茜竹 吴广富 王超 MA Li;WANG Qian-zhu;WU Guang-fu;WANG Chao(Chongqing Collaborative Innovation Center for Information Communication Technology,Chongqing 400065,China;Electronic Information and Networking Research Institute,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《计算机工程与设计》 北大核心 2021年第4期934-941,共8页 Computer Engineering and Design
基金 重庆市科技重大主题专项重点示范基金项目(cstc2018jszx-cyztzxX0035) 重庆市教委科学技术研究基金项目(KJQN201800642)。
关键词 机器类通信 非正交多址接入 资源分配 遗传算法 惩罚函数 machine type communication non-orthogonal multiple access resource allocation genetic algorithm penalty function
  • 相关文献

参考文献4

二级参考文献21

  • 1王宜举,修乃华,非线性最优化理论与方法[M].北京:科学教育出版社,2012,1.
  • 2程润伟,玄光男.遗传算法与工程优化[M].周根贵,译.北京:清华大学出版社,2004:5-13.
  • 3RASHEED K. An adaptive penalty approach for constrained genetic algorithm optimization [C]//Proceedings of the 3rd An-null Genetic Programming Conference. San Francisco, CA, USA: Morgan, 1998: 584-590.
  • 4TESSEMA B, YEN G G. A self adptive penalty function based algorithm for constrained optimization [C]//Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, N J, USA: IEEE, 2006: 246-253.
  • 5HOUCK C R, JOINES J A. On the use of non-staionary penalty functions to solve nonlinear constrained op- timization problems with C-A's [C]//Proceedings of the First IEEE Conference on Evolutionary Computation. Piscataway, N J, USA: IEEE, 1994: 579-584.
  • 6闰妍.一种新的自适应遗传算法[D].哈尔滨:哈尔滨工程大学,2010.
  • 7RUDIN W. Real and Complex Analysis (3rd Edition) [M]. Beijing: China Machine Press, 2006: 103-108.
  • 8HADI-ALOUNE A B, BEAN J C. A genetic algorithm for the multiple-choice integer program [J]. Operations Research, 1997, 45(1): 92-101.
  • 9RANARSSON T P, YAO X. Stochastic ranking for constrained evolutionary optimization [J] on Evolutionary Computation, 2000, 4(3): 284-294.
  • 10FAMANI R, WRIGHT J A. Self-adaptive fitness formulation for constrained optimization [J] on Evolutionary Computation, 2003(7): 445-455.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部