摘要
现代工业生产中出现越来越多具有大惯性、时变性、时滞性的复杂控制对象,传统控制算法已经不能满足其越来越高的控制要求.受启发于人体内血糖浓度的生理双向网络调控机制,提出一种智能协同控制器.该智能协同控制器包括主控制单元、辅控制单元、监控适应单元和协同控制单元四部分.在监控适应单元的监督控制和协同控制单元的协调控制下,主控制单元和辅控制单元分工协作,共同保证该智能协同控制器在不产生超调的前提下以较快的上升时间和调节时间达到控制系统的目标值.为检验该智能协同控制器的控制性能,选择工业乙醇生物反应器作为被控对象,对其生物反应温度进行控制仿真.实验结果表明:相比于普通BP神经网络控制器和模糊控制器,该智能协同控制器具有更好的动态性能、稳态性能及抗干扰能力.
There are more and more complex control objects with large inertia,time-varying and time-delaying in modern industrial production.The traditional control algorithms fail to meet their higher and higher control requirements.Inspired by the physiological two-way network regulation mechanism of blood glucose concentration in human body,an intelligent coordinated controller is proposed.The intelligent coordinated controller includes four parts:a main control unit(MCU),an auxiliary control unit(ACU),a monitoring adaptation unit(MAU)and a cooperative control unit(CCU).Under the supervisory control of the MAU and the coordinated control of the CCU,the MCU and the ACU work synergistically to ensure that the intelligent coordinated control system reaches the target value of the control system with a relatively smaller rise time and adjustment time on the premise of no overshoot.In order to verify the control performance of the intelligent coordinated controller,an industrial ethanol fermentation bioreactor is selected as the controlled object,and the temperature of the bioreactor is controlled and simulated.The experimental results show that the intelligent coordinated controller has better dynamic performance,steady-state performance and anti-interference ability when compared with the common BP neural network controller and fuzzy controller.
作者
刘宝
蔡梦迪
周培
张欣
LIU Bao;CAI Mengdi;ZHOU Pei;ZHANG Xin(College of Control Science and Engineering,China University of Petroleum,Qingdao 266580,China)
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021年第4期1-11,共11页
Journal of Hunan University:Natural Sciences
基金
国家自然科学基金重点资助项目(60534020,60775052)
中央高校基本科研业务费专项资金资助项目(20CX05006A)
中石油重大科技项目(ZD2019-183-007)。
关键词
双向网络调控机制
神经网络
模糊控制
协同控制
two-way network regulation mechanism
neural network
fuzzy control
collaborative control