期刊文献+

云数据中心服务器能耗建模及量化计算 被引量:10

Energy Consumption Modeling and Quantitative Calculation of Servers in Cloud Data Center
下载PDF
导出
摘要 构建精确的服务器能耗模型有助于资源提供者预测和优化数据中心的能耗.针对以往数据中心服务器因未考虑“负载的特征”而导致能耗模型精度低的问题,本文提出一种新的能耗建模及量化计算方法,其主要思路如下:根据数据中心服务器所处理任务特征的不同将其分成三类,分别为计算密集型任务、Web事务型任务和I/O密集型任务;针对每一种类型任务,分析其对服务器各部件能耗的影响;利用“主成分分析法”分析各部件参数对能耗的贡献并选择最具代表性的参数,进而结合多元线性回归和非线性回归方法建立能耗模型.实验结果表明,本文建立的能耗模型预测精度能达到95%以上;与其它模型相比,精度可提高3%左右. Building an accurate energy-consumption model of servers can assist resource providers in predicting and optimizing energy consumption of data center.To address the problem of low accuracy of energy consumption model caused by the failure to consider"load characteristics"of servers in data center,a new energy consumption model and quantitative calculation method are proposed in this paper.The main ideas are summarized as follows:Firstly,we divide the tasks into three classes:CPU intensive task,transactional web task,and I/O intensive task.Then,energy consumption contributions of all components in a server are analyzed.After that,the dominant component parameters of server energy consumption are chosen by using the Principal Component Analysis(PCA),to build a power model through the multiple linear regression method and non-linear regression method.Experimental results show that the prediction accuracy of the proposed energy consumption model can achieve more than 95%.Compared with other energy consumption models,the accuracy can be improved by around 3%.
作者 周舟 袁余俊明 李方敏 ZHOU Zhou;YUAN Yujunming;LI Fangmin(College of Information Science and Engineering,Hunan University,Changsha 410082,China;School of Computer Engineering and Applied Mathematics,Changsha University,Changsha 410022,China)
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第4期36-44,共9页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(61772088,61872403) 湖南省重点实验室项目(2019TP1011) 大学生创新创业项目(S201911077005)。
关键词 云计算 数据中心 能耗模型 任务类型 能效优化 cloud computing data center energy consumption model task types energy efficiency optimization
  • 相关文献

参考文献7

二级参考文献83

  • 1时锐,杨孝宗.自组网Random Waypoint移动模型节点空间概率分布的研究[J].计算机研究与发展,2005,42(12):2056-2062. 被引量:18
  • 2王怀民,唐扬斌,尹刚,李磊.互联网软件的可信机理[J].中国科学(E辑),2006,36(10):1156-1169. 被引量:59
  • 3Feng Xizhou, Ge Rong, Cameron K W. Power and energy profiling of scientific applications on distributed systems// Proceedings of the 19th IEEE International Parallel andDistributed Processing Symposium (IPDPS~05). 2005:34-40.
  • 4Song Shuaiwen, Ge Rong, Feng Xizhou, Cameron K W. Energy profiling and analysis of the HPC challenge bench marks. International Journal of High Performance Compu ting Applications, 2009, 23(3): 265-276.
  • 5Ge Rong, Feng Xizhou, Song Shuaiwen, Chang Hung-Ching, Li Dong. Powerpack: Energy profiling and analysis of high performance systems and applications. IEEE Transactions on Parallel and Distributed Systems, 2010, 21(5) : 658-671.
  • 6Rajamani K, Hanson H, Rubio J, Ghiasi S, Rawson F L. Applicatiowaware power management//Proceedings of the 2006 IEEE International Symposium on Workload Character ization. San Jose, USA, 2006~ 39-48.
  • 7Isci C, Martonosi M. Runtime power monitoring in high-end processors: Methodology and empirical data//Proeeedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture. Washington, DC, USA, 2003:93-104.
  • 8Lee Kyeong Jae, Skadron K. Using performance counters for runtime temperature sensing in high-performance proces- sors//Proeeedings of the 19th IEEE International Parallel and Distributed Processing Symposium(IPDPS~05). Charlot- tesville, USA, 2005:232.1.
  • 9Dhiman G, Mihic K, Rosing T. A system for online power prediction in virtualized environments using gaussian mixture models//Proceedings of the 47th Design Automation Confer- ence(DAC). New York, USA, 2010:807-812.
  • 10Ye W, Vijaykrishnan N, Kandemir M T, Irwin M J. The design and use of SimplePower: A cycle-accurate energy esti marion tool//Proceedings of the 37th Annual Design Auto- mation Conference(DAC). New York, USA, 2000, 340 345.

共引文献257

同被引文献76

引证文献10

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部