期刊文献+

一种优化的语音信号处理方法 被引量:1

An optimized voice signal processing method
下载PDF
导出
摘要 为了解决传统利用压缩感知采集语音信号的方法中所用的测量矩阵难以硬件实现,且所用的重构方法过于繁琐导致重构时间过长的问题,采用0-1随机矩阵对语音信号进行测量,用分段正交匹配追踪算法对语音信号进行重构.实验结果表明,优化后的方法可以很好地解决传统压缩感知中硬件难以实现和重构算法繁琐的问题.该方法中所用的0-1随机矩阵便于硬件实现,所用的分段正交匹配追踪(StOMP)算法能够加速信号的重构. To solve the problem that the measurement matrix used in the traditional method of using compressed sensing to collect voice signals is difficult to implement in hardware,and the reconstruction method used is too cumbersome,resulting in a long reconstruction time,a 0-1 random matrix is used to measure the speech signal,and stagewise orthogonal matching pursuit algorithm is used to reconstruct the speech signal.The experimental results show that the optimized method can well solve the problem of difficult hardware implementation and cumbersome reconstruction algorithm in traditional compressed sensing.The 0-1 random matrix used in this method is convenient for hardware implementation,and stagewise orthogonal matching pursuit algorithm used can speed up signal reconstruction.
作者 伍松 吴小龙 魏晟弘 WU Song;WU Xiaolong;WEI Shenghong(School of Mechanical and Traffic Engineering,Guangxi University of Science and Technology,Liuzhou 545006,China;Guangxi Key Laboratory of Automobile Components and Vehicle Technology(Guangxi University of Science and Technology),Liuzhou 545006,China)
出处 《广西科技大学学报》 2021年第2期78-82,共5页 Journal of Guangxi University of Science and Technology
基金 国家自然科学基金项目(51665006) 广西汽车零部件与整车技术重点实验室自主研究课题(2017GKLACVTZZ01)资助.
关键词 压缩感知 语音信号 0-1随机矩阵 分段正交匹配追踪 compressed sensing speech signal 0-1 random measurement matrix stagewise orthogonal matching pursuit
  • 相关文献

参考文献4

二级参考文献54

  • 1杜小勇,胡卫东,郁文贤.基于稀疏成份分析的逆合成孔径雷达成像技术[J].电子学报,2006,34(3):491-495. 被引量:9
  • 2何凯,何明一,吴晓荣,高涛.基于小波能量加权的医学图像融合新算法[J].科学技术与工程,2006,6(13):1949-1954. 被引量:6
  • 3Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Candes E J and Wakin M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
  • 5Herman M and Strohmer T. High-resolution compressive sensing [J]. IEEE Transactions radar via on Signal Processing, 2009, 57(6): 2275-2284.
  • 6Tello M, Lopez-Dekker P, and Mallorqui J J. A novel strategy for radar imaging based on compressive sensing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285-4295.
  • 7Ender J H G. On compressive sensing applied to radar [J]. Signal Processing, 2010, 90(5): 1402-1414.
  • 8Potter L C, Ertin E, Parker J T, et al.. Sparsity and compressed sensing in radar imaging [J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020.
  • 9Patel V M, Easley G R, Healy D M, et al. Compressed synthetic aperture radar[J]. IEEE Journal ofSelected Topics in SignalProcessing, 2010, 4(2): 244-254.
  • 10Majumdar A, Krishnan N, Pillai S R B, et al.. Extensions to orthogonal matching pursuit for compressed sensing [C]. 2011 National Conference on Communications (NCC), Bangalore, Jan. 28-30, 2011: 1-5.

共引文献29

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部