期刊文献+

一种改进的小波去噪方法在OTDR中的应用 被引量:7

Application of an improved wavelet denoising method in OTDR
下载PDF
导出
摘要 光时域反射仪(OTDR)测试中,系统链路噪声严重影响测试准确度,尤其是对于0.05~0.2 dB熔接损耗的准确检测,需要提高测试曲线的信噪比。根据OTDR波形特点,在小波阈值去噪的基础上提出一种改进的小波去噪方法,改进阈值利用对数函数的非线性并引入噪声方差,更利于滤除噪声;改进阈值判断函数留下原始数据细节并滤除噪声,且不改变反射事件和非反射事件的波形属性。实际测试表明:测试曲线相对信噪比提升了10 dB以上,去噪后配以曲线平滑滤波和恒虚警(CFAR)检测,准确检测出熔接事件。 In optical time domain reflectometer(OTDR)test,the system link noise seriously affects the test accuracy,especially for the accurate detection of 0.05-0.2 dB fusion loss,it is necessary to improve the signal-to-noise ratio of the test curve.According to the characteristics of OTDR waveform,based on wavelet threshold denoising,an improved wavelet denoising method is proposed.The improved threshold makes use of the nonlinearity of logarithmic function and introduces noise variance,which is more conducive to filtering out noise;the improved threshold judgment function leaves original data details and filters out noise,and does not change the waveform attributes of reflection events and non-reflection events.The actual test results show that the relative signal-to-noise ratio of the test curve is increased by more than 10 dB,and the fusion event can be accurately detected after denoising with curve smoothing filter and constant false alarm rate(CFAR)detection.
作者 齐晓辉 宋宛鸿 李文召 QI Xiaohui;SONG Wanhong;LI Wenzhao(College of Information Science and Engineering,Harbin Institute of Technology(Weihai),Weihai Shandong 264209,China)
出处 《光通信技术》 2021年第4期54-58,共5页 Optical Communication Technology
关键词 光时域反射仪 小波变换 阈值判断函数 反射事件 非反射事件 恒虚警检测 optical time domain reflectometer wavelet transform threshold judgment function reflection event non-reflective event constant false alarm rate detection
  • 相关文献

参考文献1

二级参考文献6

  • 1Rioul O,Vettertui M. Wavelets and signal processing[J].IEEE Trans on SP Mag,1999,(10):14-38.
  • 2Pan Quan,Zhang Pan,Dai Guangzhong. Two denoising methods by wavelet transform[J].{H}IEEE Transactions on Signal Processing,1999,(12):3401-3406.
  • 3Chang S G,Yu Bin,Vetterli M. adaptive wavelet thresholding for image denoising and comopression[J].{H}IEEE Transactions on Image Processing,2000,(09):1532-1546.
  • 4Moulin P,Liu J. Analysis of multiresolution image denoising schemes using Generalized-Gaussian and complexity priors[J].{H}IEEE Transactions on Information Theory,1999,(03):909-919.
  • 5彭玉华.信号在多尺度空间的滤波[J].通信学报,2000,21(10):58-61. 被引量:6
  • 6谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:254

共引文献2

同被引文献70

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部