期刊文献+

纳米SnO_(x)的水热合成及其储锂电化学性能 被引量:3

Hydrothermal Synthesis of Nano-SnO_(x)and Its Electrochemical Performance for Lithium-ions Storage
下载PDF
导出
摘要 采用水热法在不同碱性条件下制备了不同形貌结构的SnO_(2)和SnO纳米材料,研究了两类锡基氧化物作为锂离子电池负极材料的储锂性能.结果表明:SnCl_(2)·2H_(2)O直接水热水解或在碱性较弱时生成SnO_(2),当碱性较强(pH>13)时则生成纳米SnO;与SnO_(2)相比,SnO因其特殊的交叉网状花簇结构,表现出较高的首次充电、放电容量(1059、1590 mAh/g,库伦效率66.6%)、循环稳定性(循环500次,可逆容量达315 mAh/g)和倍率稳定性(在2.0 A/g下的可逆容量达到548 mAh/g).碱性越强,SnO_(2)的循环稳定性和倍率稳定性越好,这归因于碱性越强生成的SnO_(2)颗粒越小,增大了电解液与电极材料的接触面积,缩短了Li^(+)的传输距离,提高了循环稳定性和倍率稳定性.研究结果为寻找长寿命、高容量负极材料的应用提供了参考. SnO_(2)and SnO nanomaterials with different morphologies and structures were prepared with the hydrothermal method under different alkalinity conditions,and the lithium-ions storage performance of the two kinds of tin-based oxides as anode materials for lithium-ion batteries was studied.The results showed that SnO_(2)was formed through direct hydrolyzing of SnCl_(2)·2H_(2)O or when the alkalinity of the solvent was low.Nano-SnO was formed when the alkalinity was high enough(pH>13).Compared with SnO_(2),SnO had a special cross-network flower-cluster structure,which resulted in higher initial charge and discharge capacity(1059 and 1590 mAh/g,with an initial coulombic efficiency of 66.6%),cycle stability(the reversible capacity up to 315 mAh/g after 500 cycles)and rate stability(the reversible capacity up to 548 mAh/g at 2.0 A/g).The higher the alkalinity,the better the cycle stability and rate stability of the synthesized SnO_(2),which is due to the smaller SnO_(2)particles generated by the stronger alkaline,which increases the contact area between the electrolyte and electrode materials,shortening the transmission distance of Li^(+),improving cycle stability and rate stability.The results provide a reference for the application of anode materials with long life and high capacity.
作者 赖海 林颖 陈希 方小敏 孙艳辉 LAI Hai;LIN Ying;CHEN Xi;FANG Xiaomin;SUN Yanhui(School of Chemistry, South China Normal University, Guangzhou 510006, China)
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2021年第2期21-28,共8页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(21773076) 2019年广东省大学生创新创业训练计划项目(S201910574153)。
关键词 锡基氧化物 碱度 水热法 锂离子电池 电化学性能 tin-based oxide alkalinity hydrothermal method lithium-ion battery electrochemical performance
  • 相关文献

参考文献5

二级参考文献22

  • 1汪飞,赵铭姝,宋晓平.锂离子电池锡基负极材料的研究进展[J].电池,2005,35(2):152-154. 被引量:7
  • 2YOSHIO I, TADAHIKO K, AKIHIRO M, et al. Tin-based amorphous oxide: a high-capacity lithium-ion storage ma- terial [J]. Science, 1997 (276) ; 1395 - 1397.
  • 3BENEDEK R, THACKERAY M M. Lithium reactions with intermetallic compound electrodes [J]. J Power Sources , 2002 ( 110) ;406 -411.
  • 4GUO H, ZHAO H, JIA X, et al. A novel micro-spherical CoSn2/Sn alloy composite as high capacity anode materials for Li -ion rechargeable batteries [J]. Electrochimica Acta, 2007 (52) ;4853 - 4857.
  • 5VALVO M, LAFONT U, SIMONIN L, KELDER E M. SnCo compound for Li-ion battery made via advanced electrospraying[J].J Power Sources,2oo7(174) ;428 -434.
  • 6TAMURA N , KATO Y , MIKAMI A, et al. Study on Sn-Co alloy anodes for lithium secondary batteries [J]. J Electrochem Soc,2006(153) ;A1626 - A1632.
  • 7WOLFENSTINE J, CAMPOS S, FOSTER D, et al. Nanoscale Cu6Sn5 anodes [J]. J Power Sources 2002 ( 109) ; 230 -233.
  • 8ORTIZ G F,ALCANTARA R,RODRIGUEZ I,et al. New tin-based materials containing cobalt and carbon for lithium-ion batteries [J]. J Electroanal Chern, 2007 ( 605) ; 98 -108.
  • 9DAHN J R,MAR R E,ABOUZEID A. Combinatorial study of Sn1_xCox (0 < x < 0.6) and [Sn0.55CO0.45 ] 1-yCy (0 < y < 0.5) alloy negative electrode materials for Li-ion batteries[J]. J Electrochem Soc, 2006(153) ;A361 - A365.
  • 10LIU Z L, YU A, LEE J Y. Cycle life improvement of LiMn204 cathode in rechargeable lithium batteries [J] . J Power Sources, 1998 ( 74) ; 228 - 233.

共引文献18

同被引文献12

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部