期刊文献+

基于游客好奇心的旅游信息推荐系统 被引量:1

Tourist Information Recommendation System Based on Tourists’Curiosity
下载PDF
导出
摘要 从庞大的旅游信息中筛选出针对游客兴趣的信息是当前旅游推荐系统有待解决的问题。针对以往兴趣推荐算法的缺陷,将游客好奇心作为参考特征,并将其转化为新颖度计算,利用Python语言开发了旅游信息推荐系统。该系统能够按照景点分类、游客信息自动计算出游客感兴趣的景点进行推荐。对比可知,相比三种主流的旅游信息推荐系统在推荐准确率、用户召回率和景点覆盖率方面表现较好,说明该系统具有一定的应用价值。为旅游推荐算法和系统的改进提供了参考。 Screening out the tourist interest information from the huge tourism information is a problem to be solved in the current tourism recommendation system.In view of the defects of previous interest recommendation algorithms,tourist curiosity is taken as a reference feature and transformed into novelty calculation.A tourism information recommendation system is developed by using Python.The system can automatically calculate the attractions that tourists are interested in and recommend them according to the classification of scenic spots and tourist information.Compared with the three mainstream tourism information recommendation systems,this system performs better in recommendation accuracy rate,user recall rate and scenic spot coverage rate,which indicates that the system has certain application value.This paper provides a reference for the improvement of tourism recommendation algorithm and system.
作者 刘娜 LIU Na(Finance and Tourism School, Shanxi Polytechnic Institute, Xianyang 712000, China)
出处 《微型电脑应用》 2021年第4期137-139,共3页 Microcomputer Applications
关键词 推荐系统 旅游信息 新颖度 好奇心 recommendation systems tourism information novelty curiosity
  • 相关文献

参考文献5

二级参考文献40

  • 1MASSA P, AVESANI P. Trust-aware collaborative filtering for recom- mender systems [ C]// Proceedings of the 2004 Conference on Coopera- tive Information Systems. Berlin: Springer, 2004:492-508.
  • 2MASSA P, AVESANI P. Trust-aware recommender systems [ C] // Proceedings of the 2007 ACM Conference on Recommender Systems. New York: ACM Press, 2007:17 -24.
  • 3YU X, WANG Z. A enhanced trust model based on social network and online behavior analysis for recommendation [ C]// Proceedings of the 2010 International Conference on Computational Intelligence and Software Engineering. Piscataway: IEEE Press, 2010:1 -4.
  • 4O'DONOVAN J, SMYTH B. Trust in recommender systems [ C]// Proceedings of the 10th International Conference on Intelligent User Interfaces. New York: ACM Press, 2005. 167-174.
  • 5SARWAR B, KARYPIS G, RIEDL J. Item-based collaborative fil- tering recommendation algorithms [ C]//Proceedings of World Wide Web Conference Series. New York: ACM Press, 2001:285 -295.
  • 6GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry [ J]. Communications of the ACM, 1992, 35(12) : 61 -70.
  • 7VICTOR P, CORNELIS C, COCK M D, et al. A comparative anal- ysis of trust-enhanced recommenders for controversial items [ C]// Proceedings of the 3rd International Conference on Weblogs and So- cial Media. Palo Alto: AAAI Press, 2009:342-345.
  • 8NAKAMOTO R, NAKAJIMA S, MIYAZAKI J, et al. Tag-based contextual collaborative filtering [ J]. IAENG International Journal of Computer Science, 2007, 34(2) : 214 -219.
  • 9ZHAO S, DU N, NAUERZ A, et al. Improved recommendation based on collaborative tagging behaviors [ C]// Proceedings of the 13th International Conference on Intelligent User Interfaces. New York: ACM Press, 2008:413 -416.
  • 10Ctfip. Ctrip. corn [ EB/OL]. [2014-02-12]. http://www, ctrip.

共引文献21

同被引文献7

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部