期刊文献+

基于WOA和DPR的高光谱遥感影像分类算法

Classification Algorithm of Hyperspectral Remote Sensing Image Based on WOA and DPR
下载PDF
导出
摘要 为保留原始波段特征的同时选择最有效的特征子集以得到理想的分类效果,提出一种鲸鱼优化算法和不连续保持松弛策略的组合优化算法.该算法首先以最大熵为适应度函数,对经过波段子空间划分的高光谱遥感影像使用鲸鱼优化算法进行最优波段子集的选择,将最优子集采用不连续保持松弛策略进行平滑.为验证该组合优化方法的有效性,使用高光谱遥感分类中经典的Indian Pines数据集和Pavia U数据集,进行分类精度评价.实验结果表明组合优化算法与其他传统分类方法相比具有更高的分类精度. In order to select the most effective feature subset to obtain the ideal classification result while retaining the original band features,a combined optimization algorithm of whale optimization algorithm and discontinuity preserving relaxation(DPR)strategy was proposed in this paper.This algorithm firstly used the whale optimization algorithm(WOA)to select the optimal subset of bands for hyperspectral remote sensing images after the wave segment subspace partition,with the maximum entropy criterion(ME)as fitness function.Then discontinuity preserving relaxation method was used to smooth the optimal subset.To verify the effectiveness of the proposed combined optimization method,the classic Indian Pines and Pavia U data sets in the field of hyperspectral remote sensing classification are used to evaluate the classification accuracy.Experimental results show that the combined optimization algorithm proposed in this paper has higher classification accuracy than other traditional classification methods.
作者 谢福鼎 张莹 XIE Fuding;ZHANG Ying(School of Geographical Science,Liaoning Normal University,Dalian 116029,China)
出处 《徐州工程学院学报(自然科学版)》 CAS 2021年第1期65-70,共6页 Journal of Xuzhou Institute of Technology(Natural Sciences Edition)
基金 国家自然科学基金项目(41771178)。
关键词 高光谱遥感影像 特征选择 鲸鱼优化算法 不连续保持松弛 支持向量机 hyperspectral remote sensing image feature selection whale optimization algorithm discontinuous relaxation strategy support vector machine
  • 相关文献

参考文献3

二级参考文献23

  • 1廖克,成夕芳,吴健生,陈文惠.高分辨率卫星遥感影像在土地利用变化动态监测中的应用[J].测绘科学,2006,31(6):11-15. 被引量:90
  • 2容观奥.计算机图像处理[M].北京:清华大学出版社,2000..
  • 3V N Vapnik.The Nature of Statical Learning Theory[M].NewYork: Springer-Verlag, 1995
  • 4张晓龙 李琳.支持向量机及其应用研究[J].计算机应用研究,2005,22:9-12.
  • 5Sarle W S.Periodic Posting to the Usenet Newsgroup Comp.Ai Neu- ralnets.Neural Network FAQ.1997
  • 6Keerthi S S,Lin C J.Asymptotic Behaviors of Support Vector Ma- chines with Gaussian Kernel[J].Neural Computation,2003 ; 15 : 1667-1689
  • 7Lin H T,Lin C J.A Study on Sigmoid Kernels for SVM and the Training of Non-PSD Kernels by SMO-type Methods[R].Technical report, 2003
  • 8Cortes C,Vapnik V.Support vector networks[J].Machine Learning, 1995 ; 20 : 273-293
  • 9Chapelle,V Vapnik et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002;46:131-159
  • 10http ://www.ics.uci.edu/-mlearnf

共引文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部