期刊文献+

深度学习在焊缝缺陷检测的应用研究综述 被引量:10

Summary of Research on Application of Deep Learning in Weld Defect Detection
下载PDF
导出
摘要 焊缝缺陷的检测在石油化工等领域是极其关键的环节,焊接质量的好坏直接影响到结构的使用性能。对于X射线焊缝图像评定,目前采用的人工评片受到多种主观因素的影响,导致漏检或错检情况相对较高。近年来,随着工业智能检测技术的发展,深度学习在图像特征学习中的独特优势使其在缺陷自动检测中具备重要的实用价值。综述了以神经网络技术为代表的深度学习模型在焊缝缺陷检测方面的研究进展,详细分析了基于卷积神经网络和Faster R-CNN网络的工业设备焊缝缺陷自动检测的理论模型及其优缺点,并对焊缝缺陷自动检测技术的发展进行了展望。 The detection of weld defects is an extremely critical link in the petrochemical industry and other fields.The quality of the weld directly affects the performance of the structure.For the evaluation of X-ray weld image,the currently used manual evaluation is affected by a variety of subjective factors,resulting in a relatively high rate of missed or wrong inspections.In recent years,with the development of industrial intelligent detection technology,the unique advantages of deep learning in image feature learning make it have important practical value in automatic defect detection.The research progress of deep learning model represented by neural network technology in weld defect detection was summarized,and the theoretical models and their advantages and disadvantages of weld defect automatic detection based on convolutional neural network and Faster R-CNN network were analyzed in detail,and the development of automatic detection in weld defects was prospected.
作者 王靖然 王桂棠 杨波 王志刚 符秦沈 杨圳 Wang Jingran;Wang Guitang;Yang Bo;Wang Zhigang;Fu Qinshen;Yang Zhen(School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China;Foshan Cangke Intelligent Technology Co.,Ltd.,Foshan,Guangdong 528311,China;Guangzhou Special Pressure Equipment Inspection and Research Institute,Guangzhou 510663,China)
出处 《机电工程技术》 2021年第3期65-68,共4页 Mechanical & Electrical Engineering Technology
基金 国家自然科学基金项目(编号:61705045) 广州市科技计划现代产业技术专题项目(编号:201802010021) 佛山广工大研究院创新创业人才团队计划项目。
关键词 焊缝缺陷 卷积神经网络 Faster R-CNN网络 自动检测 weld defect convolutional neural network Faster R-CNN automatic detection
  • 相关文献

参考文献11

二级参考文献61

  • 1李勇,高炜欣,汤楠,崔亚楠.基于压缩感知的X射线螺旋焊管焊缝缺陷检测[J].焊接技术,2013,42(2):51-55. 被引量:3
  • 2蔡晓龙,穆向阳,高炜欣,魏巍.基于PSO-SVM的焊缝缺陷X射线检测[J].焊接技术,2013,42(10):57-60. 被引量:6
  • 3李乐,陈忠,张宪民.复杂背景下X射线BGA焊点气泡检测[J].焊接学报,2015,36(3):80-84. 被引量:13
  • 4彭鸽,袁慎芳.主动Lamb波监测技术中的传感元件优化布置研究[J].航空学报,2006,27(5):957-962. 被引量:24
  • 5林俊明 张开良 林发炳.焊缝裂纹快速检测与深度测量[A]..第八届全国无损检测大会暨国际无损检测技术研讨会论文集[M/CD].苏州,2003..
  • 6BS(EN) 1711:2000, Non-Destructive Examination of Welds: Eddy Current Examination of Welds by Complex Plane Analysis[S].
  • 7Liang D,Zhen W,Zhang G,et al.Proceedings of international symposium on nondestructive testing and stress-strain measurement[C]∥ Automatical Identification of the Defect Level of Welding Seam Based On X-ray Image.Tokyo,1992:267-274.
  • 8Robin N,Strickland,Hee Hahn.Wavelet transform methods for object detection and recovery[J].IEEE Transaction On Image Processing,1997,6(5):724-735.
  • 9Khandetsky V,Antonyuk I.Signal processing in defect detection using back-propagation neural networks[J].NDT&E International,2002,35(2):483-488.
  • 10Lashkia V.Defect detection in X-ray images using fuzzy reasoning[J].Image and Vision Computing,2001,19(5):261-269.

共引文献200

同被引文献86

引证文献10

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部