期刊文献+

Physics-informed deep learning for one-dimensional consolidation 被引量:2

下载PDF
导出
摘要 Neural networks with physical governing equations as constraints have recently created a new trend in machine learning research.In this context,a review of related research is first presented and discussed.The potential offered by such physics-informed deep learning models for computations in geomechanics is demonstrated by application to one-dimensional(1D)consolidation.The governing equation for 1D problems is applied as a constraint in the deep learning model.The deep learning model relies on automatic differentiation for applying the governing equation as a constraint,based on the mathematical approximations established by the neural network.The total loss is measured as a combination of the training loss(based on analytical and model predicted solutions)and the constraint loss(a requirement to satisfy the governing equation).Two classes of problems are considered:forward and inverse problems.The forward problems demonstrate the performance of a physically constrained neural network model in predicting solutions for 1D consolidation problems.Inverse problems show prediction of the coefficient of consolidation.Terzaghi’s problem,with varying boundary conditions,is used as a numerical example and the deep learning model shows a remarkable performance in both the forward and inverse problems.While the application demonstrated here is a simple 1D consolidation problem,such a deep learning model integrated with a physical law has significant implications for use in,such as,faster realtime numerical prediction for digital twins,numerical model reproducibility and constitutive model parameter optimization.
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期420-430,共11页 岩石力学与岩土工程学报(英文版)
基金 The research is supported by internal funding from SINTEF through a strategic project focusing on Machine Learning and Digitalization in the infrastructure sector.
  • 相关文献

参考文献1

二级参考文献2

共引文献77

同被引文献3

引证文献2

二级引证文献4

  • 1Farizal Hakiki,Muizzuddin Shidqi.Revisiting fracture gradient:Comments on“A new approaching method to estimate fracture gradient by correcting MattheweKelly and Eaton's stress ratio”[J].Petroleum,2018,4(1):1-6.
  • 2陶飞,刘检华,王军强,李浩.前言[J].计算机集成制造系统,2021,27(2).
  • 3M.Ablikim,M.N.Achasov,P.Adlarson,S.Ahmed,M.Albrecht,R.Aliberti,A.Amoroso,M.R.An,Q.An,X.H.Bai,Y.Bai,O.Bakina,R.Baldini Ferroli,I.Balossino,Y.Ban,K.Begzsuren,N.Berger,M.Bertani,D.Bettoni,F.Bianchi,J.Bloms,A.Bortone,I.Boyko,R.A.Briere,H.Cai,X.Cai,A.Calcaterra,G.F.Cao,N.Cao,S.A.Cetin,J.F.Chang,W.L.Chang,G.Chelkov,D.Y.Chen,G.Chen,H.S.Chen,M.L.Chen,S.J.Chen,X.R.Chen,Y.B.Chen,Z.J Chen,W.S.Cheng,G.Cibinetto,F.Cossio,X.F.Cui,H.L.Dai,X.C.Dai,A.Dbeyssi,R.E.de Boer,D.Dedovich,Z.Y.Deng,A.Denig,I.Denysenko,M.Destefanis,F.De Mori,Y.Ding,C.Dong,J.Dong,L.Y.Dong,M.Y.Dong,X.Dong,S.X.Du,Y.L.Fan,J.Fang,S.S.Fang,Y.Fang,R.Farinelli,L.Fava,F.Feldbauer,G.Felici,C.Q.Feng,J.H.Feng,M.Fritsch,C.D.Fu,Y.Gao,Y.Gao,Y.Gao,Y.G.Gao,I.Garzia,P.T.Ge,C.Geng,E.M.Gersabeck,A Gilman,K.Goetzen,L.Gong,W.X.Gong,W.Gradl,M.Greco,L.M.Gu,M.H.Gu,S.Gu,Y.T.Gu,C.Y Guan,A.Q.Guo,L.B.Guo,R.P.Guo,Y.P.Guo,A.Guskov,T.T.Han,W.Y.Han,X.Q.Hao,F.A.Harris,H Hüsken,K.L.He,F.H.Heinsius,C.H.Heinz,T.Held,Y.K.Heng,C.Herold,M.Himmelreich,T.Holtmann,Y.R.Hou,Z.L.Hou,H.M.Hu,J.F.Hu,T.Hu,Y.Hu,G.S.Huang,L.Q.Huang,X.T.Huang,Y.P.Huang,Z.Huang,T.Hussain,W.Ikegami Andersson,W.Imoehl,M.Irshad,S.Jaeger,S.Janchiv,Q.Ji,Q.P.Ji,X.B.Ji,X.L.Ji,H.B.Jiang,X.S.Jiang,J.B.Jiao,Z.Jiao,S.Jin,Y.Jin,T.Johansson,N.Kalantar-Nayestanaki,X.S.Kang,R.Kappert,M.Kavatsyuk,B.C.Ke,I.K.Keshk,A.Khoukaz,P.Kiese,R.Kiuchi,R.Kliemt,L.Koch,O.B.Kolcu,B.Kopf,M.Kuemmel,M.Kuessner,A.Kupsc,M.G.Kurth,W.Kühn,J.J.Lane,J.S.Lange,P.Larin,A.Lavania,L.Lavezzi,Z.H.Lei,H.Leithoff,M.Lellmann,T.Lenz,C.Li,C.H.Li,Cheng Li,D.M.Li,F.Li,G.Li,H.Li,H.Li,H.B.Li,H.J.Li,J.L.Li,J.Q.Li,J.S.Li,Ke Li,L.K.Li,Lei Li,P.R.Li,S.Y.Li,W.D.Li,W.G.Li,X.H.Li,X.L.Li,Z.Y.Li,H.Liang,H.Liang,H.Liang,Y.F.Liang,Y.T.Liang,L.Z.Liao,J.Libby,C.X.Lin,B.J.Liu,C.X.Liu,D.Liu,F.H.Liu,Fang Liu,Feng Liu,H.B.Liu,H.M.Liu,Huanhuan Liu,Huihui Liu,J.B.Liu,J.L.Liu,J.Y.Liu,K.Liu,K.Y.Liu,Ke Liu,L.Liu,M.H.Liu,P.L.Liu,Q.Liu,Q.Liu,S.B.Liu,Shuai Liu,T.Liu,W.M.Liu,X.Liu,Y.Liu,Y.B.Liu,Z.A.Liu,Z.Q.Liu,X.C.Lou,F.X.Lu,H.J.Lu,J.D.Lu,J.G.Lu,X.L.Lu,Y.Lu,Y.P.Lu,C.L.Luo,M.X.Luo b,P.W.Luo,T.Luo,X.L.Luo,S.Lusso,X.R.Lyu,F.C.Ma,H.L.Ma,L.L.Ma,M.M.Ma,Q.M.Ma,R.Q.Ma,R.T.Ma,X.X.Ma,X.Y.Ma,F.E.Maas,M.Maggiora,S.Maldaner,S.Malde,Q.A.Malik,A.Mangoni,Y.J.Mao,Z.P.Mao,S.Marcello,Z.X.Meng,J.G.Messchendorp,G.Mezzadri,T.J.Min,R.E.Mitchell,X.H.Mo,Y.J.Mo,N.Yu.Muchnoi,H.Muramatsu,S.Nakhoul,Y.Nefedov,F.Nerling,I.B.Nikolaev,Z.Ning,S.Nisar,S.L.Olsen,Q.Ouyang,S.Pacetti,X.Pan,Y.Pan,A.Pathak,P.Patteri,M.Pelizaeus,H.P.Peng,K.Peters,J.Pettersson,J.L.Ping,R.G.Ping,R.Poling,V.Prasad,H.Qi,H.R.Qi,K.H.Qi,M.Qi,T.Y.Qi,T.Y.Qi,S.Qian,W.-B.Qian,Z.Qian,C.F.Qiao,L.Q.Qin,X.S.Qin,Z.H.Qin,J.F.Qiu,S.Q.Qu,K.H.Rashid,K.Ravindran,C.F.Redmer,A.Rivetti,V.Rodin,M.Rolo,G.Rong,Ch.Rosner,M.Rump,H.S.Sang,A.Sarantsev,Y.Schelhaas,C.Schnier,K.Schoenning,M.Scodeggio,D.C.Shan,W.Shan,X.Y.Shan,J.F.Shangguan,M.Shao,C.P.Shen,P.X.Shen,X.Y.Shen,H.C.Shi,R.S.Shi,X.Shi,X.D Shi,W.M.Song,Y.X.Song,S.Sosio,S.Spataro,K.X.Su,P.P.Su,F.F.Sui,G.X.Sun,H.K.Sun,J.F.Sun,L.Sun,S.S.Sun,T.Sun,W.Y.Sun,X Sun,Y.J.Sun,Y.K.Sun,Y.Z.Sun,Z.T.Sun,Y.H.Tan,Y.X.Tan,C.J.Tang,G.Y.Tang,J.Tang,J.X.Teng,V.Thoren,I.Uman,B.Wang,C.W.Wang,D.Y.Wang,H.J.Wang,H.P.Wang,K.Wang,L.L.Wang,M.Wang,M.Z.Wang,Meng Wang,W.Wang,W.H.Wang,W.P.Wang,X.Wang,X.F.Wang,X.L.Wang,Y.Wang,Y.D.Wang,Y.F.Wang,Y.Q.Wang,Y.Y.Wang,Z.Wang,Z.Y.Wang,Ziyi Wang,Zongyuan Wang,D.H.Wei,P.Weidenkaff,F.Weidner,S.P.Wen,D.J.White,U.Wiedner,G.Wilkinson,M.Wolke,L.Wollenberg,J.F.Wu,L.H.Wu,L.J.Wu,X.Wu,Z.Wu,L.Xia,H.Xiao,S.Y.Xiao,Z.J.Xiao,X.H.Xie,Y.G.Xie,Y.H.Xie,T.Y.Xing,G.F.Xu,Q.J.Xu,W.Xu,X.P.Xu,F.Yan,L.Yan,W.B.Yan,W.C.Yan,Xu Yan,H.J.Yang,H.X.Yang,L.Yang,S.L.Yang,Y.X.Yang,Yifan Yang,Zhi Yang,M.Ye,M.H.Ye,J.H.Yin,Z.Y.You,B.X.Yu,C.X.Yu,G.Yu,J.S.Yu,T.Yu,C.Z.Yuan,L.Yuan,X.Q.Yuan,Y.Yuan,Z.Y.Yuan,C.X.Yue,A.Yuncu,A.A.Zafar,Y.Zeng,B.X.Zhang,Guangyi Zhang,H.Zhang,H.H.Zhang,H.Y.Zhang,J.J.Zhang,J.L.Zhang,J.Q.Zhang,J.W.Zhang,J.Y.Zhang,J.Z.Zhang,Jianyu Zhang,Jiawei Zhang,L.Q.Zhang,Lei Zhang,S.Zhang,S.F.Zhang,Shulei Zhang,X.D.Zhang,X.Y.Zhang,Y.Zhang,Y.H.Zhang,Y.T.Zhang,Yan Zhang,Yao Zhang,Yi Zhang,Z.H.Zhang,Z.Y.Zhang,G.Zhao,J.Zhao,J.Y.Zhao,J.Z.Zhao,Lei Zhao,Ling Zhao,M.G.Zhao,Q.Zhao,S.J.Zhao,Y.B.Zhao,Y.X.Zhao,Z.G.Zhao,A.Zhemchugov,B.Zheng,J.P.Zheng,Y.Zheng,Y.H.Zheng,B.Zhong,C.Zhong,L.P.Zhou,Q.Zhou,X.Zhou,X.K.Zhou,X.R.Zhou,A.N.Zhu,J.Zhu,K.Zhu,K.J.Zhu,S.H.Zhu,T.J.Zhu,W.J.Zhu,W.J.Zhu,Y.C.Zhu,Z.A.Zhu,B.S.Zou,J.H.Zou.Study of BESIII trigger efficiencies with the 2018 J/ψ data[J].Chinese Physics C,2021,45(2):48-55. 被引量:36
  • 4Jing Zhong,Lijun Zhang,Xiaoke Wu,Li Chen,Chunming Deng.A novel computational framework for establishment of atomic mobility database directly from composition profiles and its uncertainty quantification[J].Journal of Materials Science & Technology,2020,47(13):163-174. 被引量:2
  • 5Jun Li,Yong Chen.A physics-constrained deep residual network for solving the sine-Gordon equation[J].Communications in Theoretical Physics,2021,73(1):1-5. 被引量:3
  • 6Tianwen Yao,Baican Yang.Indigo Naturalis(青黛)Comes from Blue,but It Excels Blue[J].Chinese Medicine and Culture,2019,2(2):80-83.
  • 7Guang Li.Numerical investigation of CO2 storage in hydrocarbon field using a geomechanical-fluid coupling model[J].Petroleum,2016,2(3):252-257. 被引量:4
  • 8Guo-zheng Kang,Hang Li.Review on cyclic plasticity of magnesium alloys:Experiments and constitutive models[J].International Journal of Minerals,Metallurgy and Materials,2021,28(4):567-589. 被引量:12
  • 9Shunde Yin.A fully coupled finite element framework for thermal fracturing simulation in subsurface cold CO2 injection[J].Petroleum,2018,4(1):65-74. 被引量:2
  • 10Lijing Zhang,Hua Zhang,Yanguang Yuan,Shunde Yin.Poroelastoplastic reservoir modeling by tangent stiffness matrix method[J].Petroleum,2020,6(4):438-449.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部