期刊文献+

基于DBSCAN算法的恐怖主义风险评估模型——以铁路系统为例 被引量:4

Terrorism Risk Assessment Model Based on DBSCAN Clustering:Taking Railway System as an Example
下载PDF
导出
摘要 为了对铁路系统涉恐事件进行风险管理,遏制铁路系统恐怖袭击事件的发生,提出基于DBSCAN(density-based spatial clustering of applications with noise)算法的铁路系统恐怖袭击风险评估方法。首先对1970—2017年发生的铁路系统恐怖袭击案件进行统计分析,然后采用DBSCAN算法对恐怖袭击发生次数、死亡人数和受伤人数3项风险评价指标进行聚类分析,最终客观计算出几类袭击方式、袭击目标和86个国家的风险。结果表明,该方法的分析过程避免了人工赋值和专家打分策略,评估结果更具客观性和真实性,适用于反恐情报工作的风险评估领域。 To evaluate the risk of terrorism incidents in railway system and prevent the occurrence of terrorist attacks to railway system,a risk assessment method was proposed based on Density-Based Spatial Clustering of Applications with Noise(DBSCAN)algorithm.In the method,first,the terrorist attacks on railway systems from 1970 to 2017 were analyzed statistically.Secondly,the numbers of terrorist attack,the death,and the injured were used as the risk evaluating indexes for cluster analysis using DBSCAN algorithm.Finally,the risk of different types of attacks,targets,and 86 countries were calculated objectively.Results show that the method need no manual assignment and expert scoring,the evaluation results are more objective and authentic,and shall be suitable for risk assessment of anti-terrorism intelligence work.
作者 赵传鑫 刘明辉 ZHAO Chuan-xin;LIU Ming-hui(School of National Security,People's Public Security University of China,Beijing 100038,China)
出处 《科学技术与工程》 北大核心 2021年第8期3206-3213,共8页 Science Technology and Engineering
基金 中央高校基本科研业务费项目(2019JKF335) 中国人民公安大学国家安全高精尖学科资助项目(2020GDLW010)。
关键词 DBSCAN算法 聚类分析 铁路 风险评估 density-based spatial clustering of applications with noise(DBSCAN)algorithm clustering railway system risk assessment
  • 相关文献

参考文献18

二级参考文献142

共引文献245

同被引文献26

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部