期刊文献+

基于系统因素作用理论的轨道加氢站Fine Kinney风险评估方法 被引量:3

The Fine Kinney Risk Assessment for Orbital Hydrogenation Facility in System Factor Interaction Theory
下载PDF
导出
摘要 由于液态氢能源燃料具有高能量密度优势,在轨道交通运输中有望得到广泛应用。考虑到液态氢能源在加注或运输环节具有潜在风险性,提出了轨道交通加氢站风险评估模型,在Fine Kinney框架中应用因素相互作用理论,对风险指数进行多层次评估。在案例分析中,对佛山市某加氢站的风险指数进行科学评估,确保加氢站全过程全态势的运行安全。结果表明:氢能不稳定特性与周边较为频繁流动车辆和人员,给轨道交通加氢站带来一定的安全风险,在加氢站运营过程中应高度关注。 Because liquid hydrogen energy fuel features high energy density,it will be widely used in railway transportation.However,liquid hydrogen energy has potential high risks during refueling or transportation.Therefore,a multi-level risk assessment model for rail transit hydrogen refueling stations was proposed by applying the factor interaction theory in the Fine Kinney framework.In a case analysis,a scientific assessment of the risk index of a hydrogen refueling station in Foshan City was carried out,to ensure safe operation in all processes and various cases.Results show that the high explosive characteristics of hydrogen energy bring highly potential safety risks to the hydrogen refueling stations of rail transit because of the busy vehicles and people nearby,which should be taken seriously during the hydrogen refueling operation.
作者 李艳昆 刘晗 LI Yan-kun;LIU Han(CRRC Industry Research Institute Co.,Ltd.,Beijing 100070,China;The Research Institute of Emergency Science,China Coal Research Institute,China Coal Technology and Engineering Group(CCTEG),Beijing 100013,China;School of Civil Engineering,Tsinghua University,Beijing 100084,China)
出处 《科学技术与工程》 北大核心 2021年第8期3304-3309,共6页 Science Technology and Engineering
关键词 氢能源 轨道交通 风险评估 Fine Kinney框架 层次分析法 hydrogen energy rail transit risk assessment Fine Kinney framework analytic hierarchy process
  • 相关文献

参考文献6

二级参考文献67

  • 1曹小玲,蒋绍坚,吴创之,艾元方.高温空气发生器热态实验研究[J].中国电机工程学报,2005,25(2):109-113. 被引量:14
  • 2陈健,李彦,吴亚祥,廖荣福.混合动力电动汽车模糊逻辑控制策略的研究与仿真[J].汽车工程,2006,28(4):322-326. 被引量:17
  • 3Norsk Hydro ASA, DNV. Methodology for rapid risk ranking for hydrogen refueling station concepts [R]. European Integrated Hydrogen Project Phase 2, 2002.
  • 4Nilsen S, Andersen H S, Hangom G P, et all. Risk assessments of hydrogen refueling station concepts based on onsite production [R]. European Integrated Hydrogen Project Phase 2, 2003.
  • 5Norsk Hydro ASA, DNV. Risk acceptance criteria for hydrogen refueling stations[R]. European Integrated Hydrogen Project Phase 2, 2003.
  • 6Jones N G L. A schematic design for a HAZOP study on a liquid hydrogen filling station [J]. International Journal of Hydrogen Energy, 1984, 9(1-2): 115-121.
  • 7Kikukawa S, Mitsuhashi H, Miyake A. Risk assessment for liquid hydrogen fueling stations [J]. International Journal of Hydrogen Energy, 2009, 34(2): 1135-1141.
  • 8Rosyid O A, Jablonski D, Hauptmanns U. Risk analysis for the infrastructure of a hydrogen economy [J]. International Journal of Hydrogen Energy, 2007, 32(15): 3194-3200.
  • 9European Industrial Gases Association. Determination of safety distance, IGC Doc 75/01/E/rev [S]. EIGA, 2001.
  • 10Marangona A, Carcassi M, Engebφ A, et al. Safety distances: Definition and values [J]. International Journal of Hydrogen Energy, 2007, 32(13): 2192-2197.

共引文献55

同被引文献19

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部