期刊文献+

四种机器学习算法在MNIST数据集上的对比研究 被引量:3

Comparative study of four machine learning algorithms on the MNIST dataset
下载PDF
导出
摘要 MNIST数据集是检验机器学习算法性能常用的数据集。本文以MNIST数据集为例,研究四种机器学习方法的性能。首先,介绍支撑向量机、随机森林、BP神经网络和卷积神经网络;其次,将四种学习方法在MNIST数据集上训练学习;最后,对四种学习模型的性能做对比分析。就实验结果而言,卷积神经网络在性能上优于其它三种学习算法。 The MNIST dataset is a commonly used data set for testing the performance of machine learning algorithms.This paper uses the MNIST dataset as an example to study the performance of four machine learning methods.First,support vector machines,random forests,BP neural networks and convolutional neural networks are introduced.Then the four learning methods are trained and learned on the MNIST data set.Finally,the performance of the four learning models is compared and analyzed.As far as the experimental results are concerned,the performance of the convolutional neural network is better than the other three learning algorithms.
作者 肖驰 XIAO Chi(School of computer and information engineering,Hanshan Normal University,Chaozhou Guangdong 521041,China)
出处 《智能计算机与应用》 2020年第12期185-188,共4页 Intelligent Computer and Applications
基金 韩山师范学院一般项目(LY201801) 潮州市科技局项目(2018GY20)。
关键词 支撑向量机 随机森林 BP神经网络 卷积神经网络 MNTST数据集 Support vector machine Random forest BP neural network Convolution neural network MNIST dataset
  • 相关文献

参考文献5

二级参考文献64

  • 1孔锐,张冰.一种快速支持向量机增量学习算法[J].控制与决策,2005,20(10):1129-1132. 被引量:31
  • 2王平,毛剑琴.支持向量机训练算法及其应用[J].信息与电子工程,2005,3(4):309-314. 被引量:9
  • 3黄勇,郑春颖,宋忠虎.多类支持向量机算法综述[J].计算技术与自动化,2005,24(4):61-63. 被引量:33
  • 4徐文龙,姚立红,潘理,倪佑生.基于TSVM的网络入侵检测研究[J].计算机工程,2006,32(18):138-140. 被引量:5
  • 5王琦,操晓春.中国计算机学会通讯[J].2015,P60-62.
  • 6WarrenS McCulloch and Walter Pitts. A logical calculus of the ideas immanentin nervous activity. The bulletin of mathematical biophysics, 1943,5 (4) :115 -133.
  • 7Hopfield J J. Neural Networks and Physical Sys- tems with Emergent Collective Computational Abil- ities, Proc Natl Aead Sci. USA, 1982, (79) : 2254 - 2558.
  • 8E Rumelhart, G E Hinton, R J Williams. Learn- ng internal representations by error propagation. ature , 1986,323 (99) :533 - 536.
  • 9http://deepleaming, stanford, edu/wiki/index. php/UFLDL_Tutorial.
  • 10http://blog, csdn. net/datoubo/article/details/ 8577366.

共引文献389

同被引文献22

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部