摘要
刚体的一般运动是刚体运动学中最复杂的一类运动,其求解通常需要借助欧拉定理或沙勒定理.通过这两个定理,我们可以把刚体的一般运动分解成较简单的定轴转动和平动.本文主要应用代数理论中的正交矩阵描述刚体的运动,并用代数语言分析了定点转动的本征问题,证明了欧拉定理.随后,将刚体的定点转动进行分解,并给出了物理图像和推导结论,完成了对刚体复杂的一般运动的简单描述.
The general motion of a rigid body is the most complicated type of motion in rigid body kinematics,and its solution usually requires the aid of Euler's theorem or Chasles'theorem.Through these two theorems,we can decompose the general motion of a rigid body into simpler fixed-axis rotation and translation.This paper mainly uses the orthogonal matrix in the algebra theory to describe the motion of a rigid body,and analyzes the eigenproblems of fixed-point rotation,and proves Euler's theorem.Then it decomposes the fixed-point rotation of a rigid body.Physical images and derivation conclusions are given,and a simple description of the complex general motion of rigid bodies is completed.
作者
邵瀚雍
SHAO Han-yong(Department of Physics,Beijing Normal University,Beijing 100875,China)
出处
《大学物理》
2021年第5期62-66,共5页
College Physics
关键词
刚体一般运动
正交矩阵
沙勒定理
欧拉角
rigid bodies general motion
orthogonal matrix
Chasles'theorem
Euler Angles