期刊文献+

Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks 被引量:7

原文传递
导出
摘要 Inkjet printing is a promising alternative for the fabrication of thin film components for solid oxide fuel cells(SOFCs) due to its contactless, mask free, and controllable printing process. In order to obtain satisfying electrolyte thin layer structures in anode-supported SOFCs, the preparation of suitable electrolyte ceramic inks is a key. At present, such a kind of 8 mol% Y_(2)O_(3)-stabilized ZrO_(2)(8 YSZ) electrolyte ceramic ink with long-term stability and high solid loading(> 15 wt%) seems rare for precise inkjet printing, and a number of characterization and performance aspects of the inks, such as homogeneity, viscosity, and printability, should be studied. In this study, 8 YSZ ceramic inks of varied compositions were developed for inkjet printing of SOFC ceramic electrolyte layers. The dispersing effect of two types of dispersants, i.e., polyacrylic acid ammonium(PAANH4) and polyacrylic acid(PAA), were compared. The results show that ultrasonic dispersion treatment can help effectively disperse the ceramic particles in the inks. PAANH4 has a better dispersion effect for the inks developed in this study. The inks show excellent printable performance in the actual printing process. The stability of the ink can be maintained for a storage period of over 30 days with the help of initial ultrasonic dispersion. Finally, micron-size thin 8 YSZ electrolyte films were successfully fabricated through inkjet printing and sintering, based on the as-developed high solid loading 8 YSZ inks(20 wt%). The films show fully dense and intact structural morphology and smooth interfacial bonding, offering an improved structural quality of electrolyte for enhanced SOFC performance.
出处 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第2期279-290,共12页 先进陶瓷(英文)
基金 supported by the National Natural Science Foundation of China (51975384) Guangdong Basic and Applied Basic Research Foundation (2020A1515011547) Natural Science Foundation of Shenzhen (JCYJ20190808144009478) Key-Area Research and Development Program of Guangdong Province (2020B090924003)。
  • 相关文献

参考文献2

二级参考文献3

共引文献6

同被引文献28

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部