摘要
当今道路交通状态对城市管理和人们出行愈加重要,影响着人类生活的方方面面.以深圳交通为研究对象,由基础车辆数据和道路坐标构建了路网系统,从车辆速度和密度两个方面导出了交通流状态评价指数TSI.利用深度学习长短期记忆神经网络(LSTM)对车辆速度和密度两个指标进行预测,并通过对比极限学习机(ELM),时间序列(ARMA)和BP神经网络,进行仿真实验,结果表明相对于传统预测模型,所采用的LSTM网络具有更优的预测精确度和对远期预测的稳定性.最后利用预测结果计算出更能直观反映出道路交通拥堵情况的TSI指数,为人们提供了准确的交通状态预测.
Nowadays,road traffic status is becoming more and more important to city management and people’s travel,which affects every aspect of human life.This paper takes ShenZhen traffic as the research object,constructs the road network system from the basic vehicle data and road coordinates,and derives the traffic flow state evaluation index TSI from the two aspects of vehicle speed and density.Predict vehicle speed and density by using the deep learning Long Short-Term Memory(LSTM).The simulation experiment is carried out by comparing the extreme learning machine(ELM),time series(ARMA)and BP neural network.The results show that compared with the traditional prediction model,the LSTM network adopted in this paper has better prediction accuracy and stability for the long-term prediction.Finally,the TSI index,which can reflect the traffic congestion more directly,is calculated by using the predicted results,providing people with accurate traffic status prediction.
作者
马焱棋
林群
赵昱程
刘玥瑛
李顺勇
MA Yan-qi;LIN Qun;ZHAO Yu-cheng;LIU Yue-ying;LI Shun-yong(School of Mathematical Science,Shanxi University,Taiyuan 030006,China;School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China)
出处
《数学的实践与认识》
2021年第4期47-56,共10页
Mathematics in Practice and Theory
基金
国家自然科学基金项目(81803962)
山西省基础研究计划项目(201901D111320)
山西省回国留学人员科研资助项目(2017-020)
山西省研究生教育改革项目(2019JG023)
山西省留学回国人员科技活动择优资助项目(2019)
太原市科技计划研发项目(2018140105000084)
山西省高等学校精品共享课程(K2020022)。