期刊文献+

融合关键对象识别与深层自注意力的Bi-LSTM情感分析模型 被引量:11

Sentiment Analysis Model of Bi-LSTM with Key Opinion Target Recognition and Deeper Selfattention
下载PDF
导出
摘要 在线评论文本通常涉及多个评价对象,对象的表达方式有显式和隐式之分,针对不同对象的情感倾向可能不会完全一致.关键评价对象是评论中最受关注的对象,其相应的情感语义对整条评论的情感观点起主导作用.本文构建了融合关键对象识别与深层自注意力机制的Bi-LSTM模型,以提升短文本情感分类的效果.使用CNN处理文本,基于卷积层输出结果识别关键评价对象,并在此基础上完成深层自注意力的学习.将对象信息与文本信息进行融合,利用注意力机制强化的Bi-LSTM模型得到评论文本的情感分类结果.在酒店评论数据集上进行实验,与之前基于深度学习的模型相比,本文方法在精确率、召回率和F-score评价指标方面均有更好的表现. Online comment texts usually involve multiple opinion targets,which can be expressed in explicit and implicit ways,while the emotional tendencies of different targets may not be exactly the same.The key opinion target is the most concerned aspect in the comment,and its corresponding emotional semantics plays a leading role in the emotional view of the whole comment.In order to improve the effect of short text emotion classification,this paper constructs Bi-LSTM model which integrates key opinion target recognition and deeper self-attention mechanism.First,CNN is used to process the text,and the key opinion target is identified based on the output of convolution layer.On these grounds,deep self-attention learning is accomplished.Then,key opinion target information and text information are fused,and the Bi-LSTM model strengthened by attention mechanism is used to get the emotion classification results of comment texts.A comparative experiment is conducted on the evaluation dataset.Compared with the previous deep learning based models,the proposed method in this paper has better performance in evaluation indicators such as accuracy rate,recall rate and F-score.
作者 李磊 吴旭辉 刘继 LI Lei;WU Xu-hui;LIU Ji(Institute of Statistics and Data Science,Xinjiang University of Finance and Economics,Urumqi 830012,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2021年第3期504-509,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(71762028)资助 新疆维吾尔自治区社会科学基金项目(19BTJ036)资助 新疆维吾尔自治区高校科研计划项目(XJEDU2019SI006)资助。
关键词 关键评价对象 自注意力机制 Bi-LSTM 情感分析 key opinion target self-attention mechanism Bi-LSTM sentiment analysis
  • 相关文献

参考文献7

二级参考文献44

  • 1许云,樊孝忠,张锋.一种不需分词的中文文本分类方法[J].北京理工大学学报,2005,25(9):778-781. 被引量:5
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3Kim S M, Hovy E. Determining the Sentiment of Opinions [C]. In: Proceedings of the 20th International Conference on Computational Linguistics (COLING-04). 2004: 1367-1373.
  • 4Hai Z, Chang K, Kim J J. Implicit Feature Identification via Co-occurrence Association Rule Mining [C]. In: Proceedings of the 12th International Conference on Computational Linguistics and Intelligent Text Processing (CICLing'11). 2011:393-404.
  • 5Liu B, Hu M, Cheng J. Opinion Observer: Analyzing and Comparing Opinions on the Web [C]. In: Proceedings of the 14th International Conference on World Wide Web. 2005: 342-351.
  • 6Zhuang L, Jing F, Zhu X Y. Movie Review Mining and Summarization [C]. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management (CIKM'06). 2006: 43-50.
  • 7Su Q, Xiang K, Wang H, et al. Using Pointwise Mutual Information to Identify Implicit Features in Customer Reviews [C]. In: Proceedings of the 21st International Conference on Computer Processing of Oriental Languages: Beyond the Orient: the Research Challenges Ahead (ICCPOL'06). 2006: 22-30.
  • 8Su Q, Xu X, Guo H, et al. Hidden Sentiment Association in Chinese Web Opinion Mining [C]. In: Proceedings of the 17th International Conference on World Wide Web. 2008: 959-968.
  • 9Zhang Y, Zhu W. Extracting Implicit Features in Online Customer Reviews for Opinion Mining [C]. In: Proceedings of the 22nd International Conference on World Wide Web. 2013: 103-104.
  • 10Poria S, Cambria E, Gelbukh A, et al. A Rule-based Approach to Aspect Extraction from Product Reviews [C]. In: Proceedings of the 2nd Workshop on Natural Language Processing for Social Media (SocialNLP). 2014: 28-37.

共引文献250

同被引文献91

引证文献11

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部