期刊文献+

在线医疗社区问答文本的知识图谱构建研究 被引量:18

Knowledge Graph Construction of Online Medical Community Q&A Texts
原文传递
导出
摘要 【目的/意义】针对医疗问答社区数据量大、规范性差、数据稀疏等特性,综合利用双向长短记忆神经网络(BiLSTM)、条件随机场(CRF)、双向门控循环单元(BiGRU)等深度学习模型,对社区文本的实体识别及关系抽取方法进行研究。【方法/过程】首先,对实体作了进一步细分,利用BiLSTM-CRF模型对BIO标注的数据集进行实体识别,实验发现细分实体比未细分实体在结果上表现更好;接着利用BiGRU-Attention模型抽取各实体间的关系,实验结果显示,该模型无论是在准确率、召回率还是F值上都比BiLSTM-Attention抽取模型有较大的提升;最后利用Neo4j图数据库构建了一个可视化的知识图谱。【结果/结论】本研究将非结构化的社区文本转化为结构化数据,在医疗社区的智能知识服务、知识表示、个性化知识推荐等方面具有推动作用。【创新/局限】在医疗实体识别过程中将实体进行细分,成功构建了基于在线医疗社区问答文本的乳腺癌知识图谱。但由于某些关系样本量较少,对整体关系抽取的评价指标存在一定的影响。 【Purpose/significance】This paper studies the Knowledge Graph construction method of the medical question and answer community. Aiming at the large amount of data, poor standardization and sparse data of the question-and-answer community, this paper comprehensively uses the bidirectional long-term memory neural network, conditional random field, bidirectional gated recurrent unit and other models to study the Entity Recognition and Relation Extraction methods of community text.【Method/process】Firstly,the entity is further subdivided. The bidirectional long-term memory neural network and the conditional random field model(BiLSTM-CRF) are used to identify the data set of the BIO. The experiment finds that the segmented entity performs better than the un-subdivided entity. Then the relationship between the entities is extracted by the bidirectional gated recurrent unit and the attention mechanism model(BiGRU-Attention).【Result/conclusion】The experimental results show that the model has a greater improvement than the BiLSTM-Attention extraction model in terms of accuracy, recall rate and F value. Finally, a visual Knowledge Graph was constructed using the Neo4 j graph database. This research transforms unstructured community texts into structured data, which promotes intelligent knowledge services, knowledge representation, and personalized knowledge recommendation in the medical community.【Innovation/limitation】In the process of medical entity recognition, entities are subdivided, and a breast cancer Knowledge Graph based on the text of online medical community question and answer is successfully constructed. However, due to the small sample size of some relationships, there is a certain impact on the evaluation indicators of the overall relationship extraction.
作者 廖开际 黄琼影 席运江 LIAO Kai—ji;HUANG Qiong-ying;XI Yun—jiang(School of Business Administration,South China University of Technology,Guangzhou 510641,China)
出处 《情报科学》 CSSCI 北大核心 2021年第3期51-59,75,共10页 Information Science
基金 国家自然科学基金项目“基于超网络的企业微博知识挖掘及整合方法研究”(71371077)。
关键词 医疗问答社区 知识图谱 双向长短记忆神经网络 双向门控循环单元 深度学习 online medical community Knowledge Graph BiLSTM BiGRU deep learning
  • 相关文献

参考文献8

二级参考文献195

  • 1黄昌宁,张小凤.自然语言处理技术的三个里程碑[J].外语教学与研究,2002,34(3):180-187. 被引量:20
  • 2车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:117
  • 3林东,邵军力.医学诊疗领域通用专家系统设计与实现[J].自动化学报,1995,21(3):380-382. 被引量:6
  • 4黄丹.网络医疗对医疗服务理念的挑战[J].中药研究与信息,2005,7(9):31-32. 被引量:4
  • 5俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:160
  • 6Doan A,Naughton JF,Ramakrishnan R,et al.Information extraction challenges in managing unstructured data[J].ACM SIGMOD Record,2008,37(4):14-20.
  • 7Vlachos A,Gasperin C.Bootstrapping and evaluating named entity recognition in the biomedical domain[C]//Proceedings of the HLT-NAACL BioNLP Workshop on Linking Natural Language and Biology.New York:Association for Computational Linguistics Morristown,2006:138-145.
  • 8Bundschus M,Dejori M,Stetter M,et al.Extraction of semantic biomedical relations from text using conditional random fields[J].BMC Bioinformatics,2008,9:207.
  • 9Leaman R,Gonzalez GR.BANNER:An executable survey of advances in biomedical named entity recognition[C]//Proceedings of Pacific Symposium on Biocomputing.Hawaii:World Scientific Publishing Co.Pte.Ltd,2008:652-663.
  • 10Leaman R,Miller C,Gonzalez G.Enabling recognition of diseases in biomedical text with machine learning:Corpus and benchmark[C]//Proceedingsof the 3rdInternational Symposium on Lagauges in Biology and Medicine.Seogwipo-si.LBM,2009:82-89.

共引文献268

同被引文献291

引证文献18

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部