期刊文献+

水热法制备花状NiCo_(2)O_(4)及其电化学性能研究 被引量:3

Preparation of flowerlike NiCo_(2)O_(4) by hydrothermal method and study on its electrochemical properties
下载PDF
导出
摘要 以氯化镍、氯化钴为原料,采用水热法和后续煅烧处理过程制备纳米片组装的3D类花状NiCo_(2)O_(4)。利用XRD、SEM等手段对合成的样品进行物相组成、形貌结构表征,并利用电化学工作站对其进行循环伏安、恒直流充放电和交流阻抗等性能测试。结果表明,制备出的3D花状结构NiCo_(2)O_(4)由多个纳米片组装而成,各单一纳米片的厚度为40~70 nm,并且纳米片上分布着微孔,可以增大电极与电解液的接触面积。NiCo_(2)O_(4)电极材料在电流密度1 A/g的条件下的比电容为508 F/g;在电流密度8 A/g的条件下经过3000次循环后,其比电容保持率为98.5%,表明花状结构表现出高比电容以及良好的循环稳定性。 3D flower-like NiCo_(2)O_(4) is assembled by nanometer sheets that are prepared by hydrothermal method and subsequent calcination process with nickel chloride and cobalt chloride as raw material.XRD,SEM and other means are employed to characterize the phase composition,morphology and structure of the synthesized samples,and electrochemical workstation is used to test the cyclic voltammetry,constant DC charge and discharge,and AC impedance.The results show that the 3D flower-like NiCo_(2)O_(4) is composed of several nanometer sheets,each sheet has a thickness of 40-70 nm and mesoporous are distributed on each sheet,which can increase the contact area between electrode and electrolyte.The specific capacitance of the NiCo_(2)O_(4) electrode material prepared is 508 F·g^(-1) under a current density of 1 A·g^(-1),and the specific capacitance retention rate is 98.5% after 3000 cycles under a current density of 8 A·g^(-1),indicating a high specific capacitance and good cycling stability.
作者 柯稳 王会强 田志平 马强 张天博 刘军 KE Wen;WANG Hui-qiang;TIAN Zhi-ping;MA Qiang;ZHANG Tian-bo;LIU Jun(College of Mechanical and Electrical Engineering,Hebei Agricultural University,Baoding 071001,China;Baoding Xinshiqu Recheng Machining Plant,Baoding 071001,China)
出处 《现代化工》 CAS CSCD 北大核心 2021年第3期116-119,共4页 Modern Chemical Industry
基金 国家自然科学基金面上项目(3207257) 华北作物改良国家重点实验室开放课题 河北省重点研发计划(20312201D) 国家级大学生创新创业计划训练项目(202010086009)。
关键词 NiCo_(2)O_(4) 水热法 电化学性能 NiCo_(2)O_(4) hydrothermal method electrochemical performance
  • 相关文献

参考文献4

二级参考文献100

  • 1杨裕生,曹高萍.电化学电容器用多孔炭的性能调节[J].电池,2006,36(1):34-36. 被引量:19
  • 2RYU K S, KIM K M, PARK N, et al. Symmetric redox supercapacitor with conducting polyaniline electrodes [ J]. Power Source, 2002,103 (2) :305 - 310.
  • 3CONWAY B E. Some Basic Princip les Involved in Supercapacitor Operation and Development [ C ]. Proc. 3 rd Int. Sem- inar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, Florida, 1993.
  • 4KOTZ R, CARLEN M. Principles and Applications of Electrochemical Capacitors[ J ]. Electrochimica Acta, 2000,45 (2) :483.
  • 5CONWAY B E. Transition From Supercapacitor to Battery Behavior inElectrochemical Energy Storage [ C ]. Power Sources Symposium. Proceedings of the 34 th International Volume, New York, 1990:319 - 327.
  • 6WAIDHAS M, MUND K. Supercapacitors based on glassy carbon and Conceivable applications in Electrochemical capacitor Ⅱ [ J]. Electrochemical Society proceedings, 2002, 96 (25) :180 -191.
  • 7CONWAY B E, BIRSS V, WOJTOWICZ J. The role and utilization of pseudocapacitanee for energy storage by supercapaci- tors[J]. Power Sources, 1997, 66( 1 -2) :1 - 14.
  • 8BECKER H E. Low voltage electrolytic capacitor, US,2800616 [ P]. 1957 -04 -14.
  • 9TANASHI T, CARLEN M. Electrode compositions for carbon power supercapacitors[ J ]. Power Sources, 1990,80 (13) : 2775 - 2778.
  • 10ANON D. Electrochemicam society[ M ]. Extended abstracts of 188th fall meeting, 1995 : 313 - 317.

共引文献69

同被引文献18

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部