期刊文献+

一种特征自我保留的弱光图像增强方法 被引量:1

A Low-Light Image Enhancement Method with Feature Self-Preservation
下载PDF
导出
摘要 现有的多数图像增强方法通常整体增强亮度通道,会导致过度增强、细节丢失及颜色失真等问题。为克服这些问题,提出一种基于生成式对抗网络(Generative Adversarial Networks,GAN)和特征自我保留的弱光图像增强方法SFPGAN。首先从颜色、亮度及纹理3个方向评判生成图像的真实性,其次引入特征自我保留损失以保留原始图像的特征,最后使用含有一定量正常亮度和过度曝光的图像训练模型使模型获得较强的鲁棒性。大量实验证明,提出的方法在视觉质量和客观指标上都优于其他方法,并且更适应真实的图像。 Most existing image enhancement methods usually enhance the brightness channel as a whole,which usually leads to problems such as excessive enhancement,loss of detail,and color distortion.To overcome these problems,a low-light image enhancement method SFPGAN based on Generative Adversarial Network(GAN)and feature self-preservation was proposed.Firstly,the authenticity of the generated image is evaluated from color,brightness and texture.Secondly,the loss of feature self preservation is introduced to retain the features of the original image.Finally,an image training model with a certain amount of normal brightness and overexposure is used to make the model more robust.A large number of experiments show that the proposed method is superior to other methods in visual quality and objective indicators,and more suitable for real images.
作者 张华成 刘朝倩 韦屹 李喆 潘剑 ZHANG Huacheng;LIU Chaoqian;WEI Yi;LI Zhe;PAN Jian(School of Computer and Information Security,Guilin University of Electronic Technology,Guilin 541004,China;China Tobacco Guangxi Industrial Co.,Ltd.,Nanning 530001,China)
出处 《电视技术》 2021年第3期21-25,共5页 Video Engineering
关键词 生成式对抗网络 弱光图像 图像增强 特征自我保留损失 generative adversarial network low-light images image enhancement self-feature preserving loss
  • 相关文献

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部