期刊文献+

基于Q学习的无人机辅助WSN数据采集轨迹规划 被引量:4

Trajectory Planning for Unmanned Aerial Vehicle Assisted WSN Data Collection Based on Q-Learning
下载PDF
导出
摘要 针对无人机辅助采集无线传感器网络数据时各节点数据产生速率随机和汇聚节点状态不一致的场景,提出基于Q学习的非连续无人机轨迹规划算法Q-TDUD,以提高无人机能量效率和数据采集效率。基于各节点在周期内数据产生速率的随机性建立汇聚节点的汇聚延时模型,应用强化学习中的Q学习算法将各汇聚节点的延迟时间和采集链路的上行传输速率归一化到奖励函数中,通过迭代计算得到最佳非连续无人机飞行轨迹。实验结果表明,与TSP-continues、TSP、NJS-continues和NJS算法相比,Q-TDUD算法能够缩短无人机的任务完成时间,提高无人机能效和数据采集效率。 In some scenarios where UnmannedAerial Vehicle(UAV)assists inWireless Sensor Network(WSN)data collection,the data generation rate of each node is random and the states of sink node are inconsistent.To address the problem,this paper proposes a Q-learning-based algorithm called Q-TDUD for discontinuous UAV trajectory planning,which can improve the energy efficiency of UAV and data collection efficiency.Based on the randomness of the data generation rate of each node in the cycle,the aggregation delay model of the sink node is established.The Q-learning algorithm in reinforcement learning is used to normalize the delay time of each sink node and the uplink transmission rate of the collection link into the reward function,and the optimal discontinuous flight trajectory of the UAV is obtained through iterative calculation.Experimental results show that,compared with TSP-continues,TSP,NJS-continues and NJS algorithms,the proposed Q-TDUD algorithm can reduce the task completion time of UAV,and improve the energy efficiency and data collection efficiency of UAV.
作者 蒋宝庆 陈宏滨 JIANG Baoqing;CHEN Hongbin(School of Information and Communication,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China)
出处 《计算机工程》 CAS CSCD 北大核心 2021年第4期127-134,165,共9页 Computer Engineering
基金 国家自然科学基金(61671165)。
关键词 无线传感器网络 数据采集 无人机 轨迹规划 Q学习算法 Wireless Sensor Network(WSN) data collection Unmanned Aerial Vehicle(UAV) trajectory planning Q-learning algorithm
  • 相关文献

参考文献8

二级参考文献61

  • 1阎平凡.再励学习——原理、算法及其在智能控制中的应用[J].信息与控制,1996,25(1):28-34. 被引量:30
  • 2高庆吉,张友谊,王红星,洪炳熔.非完整移动机器人鲁棒控制方法研究[J].东北电力大学学报,2006,26(2):19-23. 被引量:1
  • 3[1]Usama M.Fayyad Cory A.Reina Paul S.Bradley,Initialization of Iterative Refinement Clustering Algorithms[C].Proc.4th International Conf.On Knowledge Discovery & Data Mining,1998.
  • 4[2]Pena J M ,J.A.Lozano,and P.Larranaga,An Empirical Comparison of four Initialization Methods for the K-Means Algorithm[J].Pattern Recognition Letters, 1999,20:1027-1040.
  • 5[3]Pal N R and J.C.Bezdek,On Cluster Validity for the Fuzzy c-Means Model,IEEE Transactions on Fuzzy Systems[J].1995,3:370-390.
  • 6[4]Rezaee M R, B P F Lelieveldt and J.H.C.Reiber,A New Cluster Validity Index for Fuzzy c-Means[J].Pattern Recognition Letters ,1998,19:237-246.
  • 7[5]Ray S and R H Turi,Determination of Number of Clusters in K-Means Clustering and Application in Colour Image Segmentation[C].ICAPRDT'99,Calcutta,India,27-29 December,1999.
  • 8Marco Dorgio,Gianni Di Caro.Ant Algorithms for Discrete Optimization[J].Artificial Life, 1999;5(3) : 137-172.
  • 9Luca M Gambardella,Marco Dorgio.Ant-Q :A reinforcement Learning approach to the traveling salesman problem[C].In :Proceeding of ML-95,Twelfthlntem Conf on Machine Learning,Morgan Kanfmann,1995 252-260.
  • 10Hidenori KAWAMURA,Masahito YAMAMOTO,Keiji SUZUKI et al. Multiple Ant Colonies Algorithm Based on Colony Level Interactions[J]. IEICE TRANS Fundamentals,2000;E83-A(2).

共引文献235

同被引文献33

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部