期刊文献+

密集MANET下MPR的改进蚁群优化算法研究 被引量:1

Research on Improved Ant Colony Optimization Algorithm of MPR Under Dense MANET
下载PDF
导出
摘要 针对传统多点中继(MPR)机制因使用贪心算法而导致求解集合冗余的问题,通过将蚁群优化算法与MPR机制相结合,提出一种基于状态信息的动态更新蚁群优化(DUACO)算法。与传统状态更新机制相比,该算法添加了信息素的动态更新机制和补偿-惩罚规则,考虑到节点移动性将会影响求解集合的精确度,重新定义蚁群算法中的路径选择函数,并将节点移动状态信息加入计算过程。实验结果表明,DUACO算法不仅能够有效降低MPR集合冗余以及提高网络性能,而且还可解决启发式蚁群算法易陷入局部最优解的问题。 The traditional Multi-Point Relay(MPR)mechanism uses the greedy algorithm,which usually leads to solution set redundancy.To address the problem,this paper combines the Ant Colony Optimization(ACO)algorithm and MPR to propose a Dynamic Update Ant Colony Optimization(DUACO)algorithm based on state information.Compared with the traditional state update mechanism,the algorithm introduces a dynamic update mechanism of pheromone and a compensation-penalty rule.Considering the node mobility affects the accuracy of the solution set,the path selection function in the ant colony algorithm is redefined,and the movement state information of the node is introduced into the calculation.Experimental results show that the DUACO algorithm not only significantly reduces the redundancy of the MPR set and improves network performance,but also avoids the tendency of the heuristic ant colony algorithm to fall into a local optimal solution easily.
作者 赵启超 杨余旺 谢勇盛 汤小芳 李操 ZHAO Qichao;YANG Yuwang;XIE Yongsheng;TANG Xiaofang;LI Cao(School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《计算机工程》 CAS CSCD 北大核心 2021年第4期135-140,172,共7页 Computer Engineering
基金 国防基础科研计划 江苏省科技重点及面上项目(BE2018393) 苏州市重点产业技术创新项目(SYG201826)。
关键词 移动自组网 优化链路状态路由协议 多点中继 蚁群优化算法 密集型网络 正反馈机制 Mobile Ad-hoc Network(MANet) Optimized Link State Routing(OLSR)protocol Multi-Point Relay(MPR) Ant Colony Optimization(ACO)algorithm dense network positive feedback mechanism
  • 相关文献

参考文献3

二级参考文献12

  • 1段海滨,王道波.蚁群算法的全局收敛性研究及改进[J].系统工程与电子技术,2004,26(10):1506-1509. 被引量:39
  • 2Hinden R and Deering S.Internet protocol version 6 (IPv6) addressing architecture.RFC 3513,2003.
  • 3Jia W,Zhou W,and Kaiser J.Efficient algorithm for mobile multicast using anycast group.IEE Proc.-Communications,2001,148(1):14-18.
  • 4Xuan D,Jia W,and Zhao W,et al..A routing protocol for anycast messages.IEEE Trans.on Parallel and Distributed Systems,2000,11(6):571-588.
  • 5Katabi D and Wroclawski J.A framework for scalable global IP-anycast (GIA).In Proc.ACM SIGCOMM'00,Stockholm,2000,30:3-15.
  • 6Lin C,Lo J,and Kuo S.Load-balanced anycast routing.IEEE the 10th International Conference on Parallel and Distributed Systems,Newport Beach,2004:701-708.
  • 7Zegura E W,Ammar M H,and Fei Z,et al..Application-layer anycasting:A server selection architecture and use in a replicated web service.IEEE/ACM Trans.on Networking,2000,8(4):455-466.
  • 8Dorigo M,Maniezzo V,and Colorni A.Ant system:Optimization by a colony of cooperating agents.IEEE Trans.on Systems,Man,and Cybernetics,1996,26(1):29-41.
  • 9Lu Y,Zhao G Z,and Su F J.Adaptive ant-based dynamic routing algorithm.5th World Congress on Intelligent Control and Automation,Hangzhou,2004,3:2694-2697.
  • 10Hsiao Y T,Chuang C L,and Chien C C.Computer network load-balancing and routing by ant colony optimization.12th IEEE International Conference on Networks,Singapore,2004,1:313-318.

共引文献403

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部