摘要无穷级数是微积分中的一个重要概念,它体现了无限与有限的辨证统一,在自然科学、工程技术等领域发挥着重要的作用。本文主要从数学史与数学教育(History & Pedagogy of Mathematics,HPM)的视角,以发生教学法为基础,设计了"无穷级数概念引入"的教学,整个过程环环相扣,不断激发学生的求知欲望。实践表明,HPM视角下的无穷级数教学有助于学生对其概念的理解和敛散性判别方法的掌握。
3Struik D J. A Source Book in Mathematics, 1200-1800 [M]. Inceton: Princeton University Press, 1986.
4L' Hospital G. Analyse des Infiniment Petits [M]. Aris: De L'Imprimerie Royale, 1696.
5Giraldo V, Carvalho L M. Mutational Descriptions and the Development of the Concept of Derivative [C]. In: Douglas Quinney. Proceedings of the 3rd International Conference on the Teaching of Mathematics at the Undergraduate Level, Istanbul: John Wiley & Sons Inc, 2006.
6Bagni, G. T. The Role of the History of Mathematics in Mathematics Edu cation: Reflections and Examples [A]. Schwank, I (ed.).P roceedings of CERME- 1 [ C ]. Forschungsinstitut FuerMathemati- kdidaktik, Osnabrueck, II, 2000.220-231.
7Tzanakis, C. & Arcavi, A. Integrating History of Mathmatics in the Classroom: an Analytic Survey [A]. J. Fauvel & J. van Maanen (Eds,). History in Mathematics Education-The ICMI Study [C]. Dordrecht: Kluwer Academic Publishers, 2000. 201-240.
8Toeplitz, O. The Calculus: A Genetic Approach[M]. Chicago: U- niversity Press, 2007.
9Freudenthal, H. Major Problems of Mathematics Education[J]. Educational Studies in Mathematics, 1981, 12(2): 133-150.
10Jankvist. U. T. A Categorization of the "Why" and "How" of Using History in Mathematics Education [J]. Educational Studies in Mat- ematics, 2009,71 ( 3 ) : 235-261.